Nvidia近日表示,Nvidia AI超级计算平台最先进的版本Nvidia DGX Cloud现在已经与Nvidia AI Enterprise软件套件一起在Oracle Cloud Marketplace中提供了。

在Oracle云基础设施上发布Nvidia DGX Cloud,将为客户提供访问Nvidia最强大GPU的一种方法,用于以训练生成式AI和其他工作负载。Nvidia表示,在今年3月Nvidia GTX大会上宣布推出的Nvidia DGX Cloud AI是一项云托管的AI超级计算服务,可以立即提供客户开始训练强大生成式AI和其他应用所需的一切。
该服务基于Nvidia广受欢迎的DGX平台,后者是一种专用硬件产品,企业可以购买并设置运行在自己的本地数据中心。企业借助DGX Cloud就不再需要等待购买昂贵且经常需求的平台,而是可以按月租用AI工作负载所需的基础设施。换句话说,Nvidia正在向更多企业提供Nvidia的AI超级计算机,包括那些无力自行部署和管理其系统的企业。
Nvidia解释说,DGX Cloud的每个实例都可以提供8个80 GB Tensor Core GPU,这意味着每个节点都有640 GB的GPU内存。该平台构建在高性能、低延迟的网络结构之上,以确保工作负载可以跨互连系统集群进行扩展。通过这种方式,多个DGX Cloud实例就可以充当一个巨大的GPU来处理最苛刻的工作负载。
DGX Cloud平台与Nvidia AI Enterprise软件搭配,让客户能够访问100多个AI框架和预训练模型,以便他们可以针对特有的、特定领域的任务构建、完善和操作定制的大型语言模型和其他基于自己专有数据训练的生成式AI模型。
Nvidia表示,从今天开始,客户可以通过Oracle Cloud Marketplace访问Nvidia DGX Cloud AI。客户将可以使用Nvidia Base Command Platform与硬件交互,平台让开发人员可以通过网络浏览器访问AI超级计算功能。通过提供客户AI基础设施的单一窗格视图,Base Command Platform简化了多节点集群的管理。
Nvidia表示,客户将能够快速构建他们的生成式AI应用,并将其轻松部署Oracle Cloud Infrastructure或他们自己的本地平台上,从而更容易采用混合云策略。
配合此次发布,Nvidia分享了一个客户成功案例,称纽约州北部的奥尔巴尼大学最近在Oracle基础设施上使用了Nvidia DGX Cloud AI,作为其AI Plus计划的基础。该计划将AI教学与学习整合到大学的研究和学术事业中,涉及网络安全、天气预报、健康数据分析、药物发现和下一代半导体设计等领域。奥尔巴尼大学方面表示,正在Oracle云上使用Nvidia的平台来构建自己的本地超级计算机。
奥尔巴尼大学负责研究和经济发展的副校长Thenkurussi Kesavadas表示:“我们正在加快实现将AI融入几乎所有学术和研究学科的使命之中。我们将推动医疗、安全和经济竞争力的进步,同时帮助学生在不断变化的就业市场中发挥作用。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。