英特尔今天推出了机器编程研究系统ControlFlag,它可以自主检测代码中的错误。虽然仍处于早期阶段,这个新颖的自我监督系统有望成为一个强大的生产力工具,帮助软件开发者进行耗时费力的Debug。在初步测试中,ControlFlag利用超过10亿行未标记的产品级别的代码进行了训练并学习了新的缺陷。

英特尔首席科学家、英特尔研究院机器编程研究主任及创始人Justin Gottschlich表示:“我们认为ControlFlag是一个强大的新工具,可以大幅减少评估和Debug代码所需的时间和成本。研究发现,软件开发者会花费大约一半的时间用来Debug。通过ControlFlag以及类似的系统,程序员有望大幅减少Debug的时间并把更多时间用于人类程序员最擅长的工作——向机器展现有创造性的新想法。”
在软件重要性逐渐突显的今天,开发者依然继续把不成比例的大量时间用于修复Bug,而不是用于写代码。事实上,在IT行业每年花费的1.25万亿美元软件开发成本中,大约有50%是用于Debug代码1 。
随着异构时代的来临,即由多样化专用处理器组合来管理当今的海量数据,管理这些系统所需的软件变得越来越复杂,使得出现Bug的可能性也越来越高。此外,找到能够为跨架构的硬件正确、高效、安全地写代码的程序员非常困难,这同样也增加了代码中出现难以发现的新错误的可能性。因此,Debug代码工作将给开发者和整个行业带来更高的代价。
完全实现的ControlFlag通过自动化处理测试、监控和Debug等繁琐的软件开发工作,可以帮助缓解上述挑战。这不仅可以提高开发者的工作效率并让他们把更多时间用于创意,也能解决当前软件开发中成本最高的问题之一。
ControlFlag检测Bug的功能是通过机器编程实现的,其中融合了机器学习、形式化方法、编程语言、编译器和计算机系统。
具体来说,ControlFlag通过被称为异常检测(anomaly detection)的功能进行运转。作为自然界中生活的人类,我们通过观察了解到某些被认为是“正常”的模式。类似地,ControlFlag通过学习经过验证的例子来检测正常的编程模式,发现代码中可能造成Bug的异常。此外,不管代码使用什么编程语言,ControlFlag都可以检测这些异常。
ControlFlag的无监督模式识别方法的一个主要优势是,它可以从本质上学会适应开发者的风格。在有限的需要评估的控制工具输入信息中,ControlFlag可以识别编程语言中的各种风格,类似于读者识别英语中使用完整单词和缩略语的差异。
该工具会学会识别并标记这些风格选择,并根据其洞察可以自制错误识别和建议解决方案,从而让ControlFlag尽可能避免把两个开发团队之间的风格差异认为是代码错误。
ControlFlag已经证明,能够在广泛使用的产品级别代码中发现隐藏的Bug,而这些代码之前已经被软件开发者审核过。例如,在分析cURL(一个开源的命令行工具,被程序员广泛地用于实现互联网下载)时,ControlFlag发现了一个之前未被发现的异常,促使cURL开发者提出了一个更好的解决方案。
英特尔甚至已经开始评估在内部使用ControlFlag,在自己的软件和固件产品化中寻找Bug。这是英特尔Rapid Analysis for Developers项目的关键组成部分,该项目旨在通过提供专家支持从而帮助程序员加快速度。
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。