英特尔今天推出了机器编程研究系统ControlFlag,它可以自主检测代码中的错误。虽然仍处于早期阶段,这个新颖的自我监督系统有望成为一个强大的生产力工具,帮助软件开发者进行耗时费力的Debug。在初步测试中,ControlFlag利用超过10亿行未标记的产品级别的代码进行了训练并学习了新的缺陷。
英特尔首席科学家、英特尔研究院机器编程研究主任及创始人Justin Gottschlich表示:“我们认为ControlFlag是一个强大的新工具,可以大幅减少评估和Debug代码所需的时间和成本。研究发现,软件开发者会花费大约一半的时间用来Debug。通过ControlFlag以及类似的系统,程序员有望大幅减少Debug的时间并把更多时间用于人类程序员最擅长的工作——向机器展现有创造性的新想法。”
在软件重要性逐渐突显的今天,开发者依然继续把不成比例的大量时间用于修复Bug,而不是用于写代码。事实上,在IT行业每年花费的1.25万亿美元软件开发成本中,大约有50%是用于Debug代码1 。
随着异构时代的来临,即由多样化专用处理器组合来管理当今的海量数据,管理这些系统所需的软件变得越来越复杂,使得出现Bug的可能性也越来越高。此外,找到能够为跨架构的硬件正确、高效、安全地写代码的程序员非常困难,这同样也增加了代码中出现难以发现的新错误的可能性。因此,Debug代码工作将给开发者和整个行业带来更高的代价。
完全实现的ControlFlag通过自动化处理测试、监控和Debug等繁琐的软件开发工作,可以帮助缓解上述挑战。这不仅可以提高开发者的工作效率并让他们把更多时间用于创意,也能解决当前软件开发中成本最高的问题之一。
ControlFlag检测Bug的功能是通过机器编程实现的,其中融合了机器学习、形式化方法、编程语言、编译器和计算机系统。
具体来说,ControlFlag通过被称为异常检测(anomaly detection)的功能进行运转。作为自然界中生活的人类,我们通过观察了解到某些被认为是“正常”的模式。类似地,ControlFlag通过学习经过验证的例子来检测正常的编程模式,发现代码中可能造成Bug的异常。此外,不管代码使用什么编程语言,ControlFlag都可以检测这些异常。
ControlFlag的无监督模式识别方法的一个主要优势是,它可以从本质上学会适应开发者的风格。在有限的需要评估的控制工具输入信息中,ControlFlag可以识别编程语言中的各种风格,类似于读者识别英语中使用完整单词和缩略语的差异。
该工具会学会识别并标记这些风格选择,并根据其洞察可以自制错误识别和建议解决方案,从而让ControlFlag尽可能避免把两个开发团队之间的风格差异认为是代码错误。
ControlFlag已经证明,能够在广泛使用的产品级别代码中发现隐藏的Bug,而这些代码之前已经被软件开发者审核过。例如,在分析cURL(一个开源的命令行工具,被程序员广泛地用于实现互联网下载)时,ControlFlag发现了一个之前未被发现的异常,促使cURL开发者提出了一个更好的解决方案。
英特尔甚至已经开始评估在内部使用ControlFlag,在自己的软件和固件产品化中寻找Bug。这是英特尔Rapid Analysis for Developers项目的关键组成部分,该项目旨在通过提供专家支持从而帮助程序员加快速度。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。