从工作站、云到全球Top500超级计算机,英特尔一直是高性能计算的坚实基础。在近日举行的2020年超级计算大会(SC20)上,英特尔副总裁兼高性能计算部总经理Trish Damkroger展示了英特尔及合作伙伴通过软、硬件技术来加速先进高性能计算系统广泛部署,共同塑造高性能计算的未来。
英特尔在2020年超级计算大会上主要亮点:
加州圣克拉拉,2020年11月17日——在2020年超级计算大会上,英特尔重点展示了公司如何通过软硬件技术塑造高性能计算的未来。全球范围内,诸多企业选择英特尔® XPU(CPU、GPU、FPGA和加速器)和oneAPI编程环境,来加快先进计算系统的开发和部署。
第三代英特尔至强可扩展处理器(代号“Ice Lake”)
在2020年超级计算大会的主题演讲中,英特尔副总裁兼高性能计算部总经理Trish Damkroger着重介绍了英特尔即将推出的Ice Lake服务器处理器,它将为广泛的高性能计算工作负载提供性能优化的功能。通过更高的内存带宽、新的高性能Sunny Cove核心架构、更多的处理器核数,以及对第四代PCIe的支持,Ice Lake处理器将帮助客户解决包括生命科学、材料科学和天气建模等多个学科的科学挑战。
早期测试表明,对比搭载64核处理器的竞品x86系统,采用32核双路系统的Ice Lake处理器能够以一半数量的处理器内核为特定工作负载提供更高的性能。对比搭载比32核Ice Lake处理器系统多一倍处理器内核的竞品x86系统,生命科学和金融服务应用类客户会在NAMD分子动力学模拟(最高1.2倍)、蒙特卡罗模拟(最高1.3倍)和LAMMPS分子建模模拟(最高1.2倍)等工作负载上都获得更高的性能。
诸多客户正在采用Ice Lake来满足自身对新一代高性能计算的需求,包括:
英特尔Xe-HP GPU为美国阿贡国家实验室开辟通向E级计算之路
在2020年超级计算大会上,英特尔和美国阿贡国家实验室(Argonne National Laboratory)宣布双方将基于英特尔Xe-HP微架构的GPU和英特尔oneAPI工具包,共同设计和验证E级应用。阿贡国家实验室的开发者采用英特尔最新的异构计算编程环境,以确保科学应用能够支持正在部署的Aurora超级计算机的规模和架构。
Xe-HP GPU为阿贡国家实验室提供了面向英特尔 Xe-HPC GPU(“Ponte Vecchio”)的开发工具,后者将被应用于Aurora系统。
面向高性能计算的英特尔精选解决方案
英特尔近期宣布,数家新的合作伙伴已经验证并正在提供采用了英特尔精选解决方案的高性能计算优化解决方案,这些合作伙伴包括:
AWS宣布将面向模拟和建模的英特尔精选解决方案集成到其ParallelCluster环境中。利用英特尔优化的环境,客户可以在AWS上轻松创建高性能、按需自动扩展的集群。该英特尔精选解决方案已经在AWS的c5n.18xlarge、m5n.24xlarge和r5n.24xlarge实例上进行了验证。
Penguin Computing正在部署面向高性能计算和AI融合集群的英特尔精选解决方案,使客户能够满足越来越高的同时运行AI和高性能计算工作负载的需求。
Advantech携手英特尔与GARAOTUS,为客户提供Advantech SKY-5240。Advantech SKY-5240满足了基因组学应用的高性能计算需求,并已经通过验证,成为面向基因组分析的英特尔精选解决方案。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。