从工作站、云到全球Top500超级计算机,英特尔一直是高性能计算的坚实基础。在近日举行的2020年超级计算大会(SC20)上,英特尔副总裁兼高性能计算部总经理Trish Damkroger展示了英特尔及合作伙伴通过软、硬件技术来加速先进高性能计算系统广泛部署,共同塑造高性能计算的未来。
英特尔在2020年超级计算大会上主要亮点:
加州圣克拉拉,2020年11月17日——在2020年超级计算大会上,英特尔重点展示了公司如何通过软硬件技术塑造高性能计算的未来。全球范围内,诸多企业选择英特尔® XPU(CPU、GPU、FPGA和加速器)和oneAPI编程环境,来加快先进计算系统的开发和部署。
第三代英特尔至强可扩展处理器(代号“Ice Lake”)
在2020年超级计算大会的主题演讲中,英特尔副总裁兼高性能计算部总经理Trish Damkroger着重介绍了英特尔即将推出的Ice Lake服务器处理器,它将为广泛的高性能计算工作负载提供性能优化的功能。通过更高的内存带宽、新的高性能Sunny Cove核心架构、更多的处理器核数,以及对第四代PCIe的支持,Ice Lake处理器将帮助客户解决包括生命科学、材料科学和天气建模等多个学科的科学挑战。
早期测试表明,对比搭载64核处理器的竞品x86系统,采用32核双路系统的Ice Lake处理器能够以一半数量的处理器内核为特定工作负载提供更高的性能。对比搭载比32核Ice Lake处理器系统多一倍处理器内核的竞品x86系统,生命科学和金融服务应用类客户会在NAMD分子动力学模拟(最高1.2倍)、蒙特卡罗模拟(最高1.3倍)和LAMMPS分子建模模拟(最高1.2倍)等工作负载上都获得更高的性能。
诸多客户正在采用Ice Lake来满足自身对新一代高性能计算的需求,包括:
英特尔Xe-HP GPU为美国阿贡国家实验室开辟通向E级计算之路
在2020年超级计算大会上,英特尔和美国阿贡国家实验室(Argonne National Laboratory)宣布双方将基于英特尔Xe-HP微架构的GPU和英特尔oneAPI工具包,共同设计和验证E级应用。阿贡国家实验室的开发者采用英特尔最新的异构计算编程环境,以确保科学应用能够支持正在部署的Aurora超级计算机的规模和架构。
Xe-HP GPU为阿贡国家实验室提供了面向英特尔 Xe-HPC GPU(“Ponte Vecchio”)的开发工具,后者将被应用于Aurora系统。
面向高性能计算的英特尔精选解决方案
英特尔近期宣布,数家新的合作伙伴已经验证并正在提供采用了英特尔精选解决方案的高性能计算优化解决方案,这些合作伙伴包括:
AWS宣布将面向模拟和建模的英特尔精选解决方案集成到其ParallelCluster环境中。利用英特尔优化的环境,客户可以在AWS上轻松创建高性能、按需自动扩展的集群。该英特尔精选解决方案已经在AWS的c5n.18xlarge、m5n.24xlarge和r5n.24xlarge实例上进行了验证。
Penguin Computing正在部署面向高性能计算和AI融合集群的英特尔精选解决方案,使客户能够满足越来越高的同时运行AI和高性能计算工作负载的需求。
Advantech携手英特尔与GARAOTUS,为客户提供Advantech SKY-5240。Advantech SKY-5240满足了基因组学应用的高性能计算需求,并已经通过验证,成为面向基因组分析的英特尔精选解决方案。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。