英特尔和Katana Graph今天宣布合作,双方将对Katana Graph引擎在英特尔系列产品上进行移植和优化,这些产品包括英特尔至强可扩展处理器、基于至强的计算群集以及即将推出的英特尔独立GPU系列,包括代号为“Ponte Vecchio”的GPU。英特尔和Katana Graph将利用高性能、横向扩展的并行计算,帮助客户以无与伦比的效率解决大规模非结构化数据问题。
大规模、非结构化数据集经常应用于社交网络分析、安全和认证、电子芯片设计工具、生物医学和制药应用(基因网络分析和医学知识图形挖掘)以及用于模拟传染病传播的流行病学研究中。英特尔广泛的技术生态系统可以帮助客户在数据周期的每个阶段实现分析加速。例如,英特尔至强可扩展处理器可以高速分析大量数据,同时英特尔傲腾持久内存技术可以帮助客户克服数据移动和存储瓶颈。
“为了对大型非结构化数据进行深入分析并大规模使用,需要在CPU和GPU上同时部署和执行。我们与Katana Graph的合作将加快图形分析在英特尔产品的应用,包括市场领先的英特尔至强可扩展处理器以及即将推出的GPU产品,使更多客户从图形计算中受益,”英特尔公司架构、图形与软件副总裁、机器学习性能总经理Wei Li表示。
Katana Graph引擎是纵向扩展和横向扩展分析领域的佼佼者,它可以在多种平台和技术组合上运行,包括x86 CPU的大型计算集群、具有英特尔傲腾持久内存的大型内存系统、单节点或多节点GPU平台或这些技术的任意组合。此外,它还可以扩展到生产集群中的数百台机器上。
Katana Graph的首席执行官兼联合创始人Keshav Pingali表示:“在大型、非结构化数据集上进行计算是未来的范例。与该领域的其他公司不同,Katana有专门的高级编程模型以及针对处理图形和超图应用程序的运行系统。这就是为什么我们的分析库比其他供应商的解决方案快几个数量级的原因。我们很高兴能与英特尔合作,为我们共同的客户带来高性能、可扩展的图形计算。”
Katana Graph引擎已经被客户使用,包括:
好文章,需要你的鼓励
四川大学研究团队发现,当前先进的AI模型在面对信息不完整的数学问题时,缺乏主动询问澄清信息的能力,更倾向于基于假设给出答案。
中南大学等机构联合发布TextAtlas5M数据集,包含500万图像-文本对,专门解决AI长文本图像生成难题。该数据集平均文本长度148.82词,远超现有数据集,涵盖广告、学术、教育等真实场景。配套的TextAtlasEval基准测试显示,即使最先进的商业模型也面临显著挑战,为AI图像生成技术指明了新的发展方向。
从11岁就梦想造人形机器人的Bernt Bornich,用'huggable'形容他的Neo Gamma机器人——这个能举起150磅的66磅'运动员',正以家庭为试验场突破AI学习瓶颈:'工厂20小时就触及学习天花板,而家庭环境的多样性才是通往AGI的钥匙'。
剑桥大学研究团队创建了史上最难的AI视觉测试ZeroBench,包含100道精心设计的视觉推理题目。在这项测试中,包括GPT-4o、Claude、Gemini在内的20个全球最先进AI模型全部得了0分,暴露了当前AI在基础视觉理解上的严重缺陷。研究发现AI主要在计数、空间推理等基础任务上失败,而非逻辑推理能力不足。