英特尔和Katana Graph今天宣布合作,双方将对Katana Graph引擎在英特尔系列产品上进行移植和优化,这些产品包括英特尔至强可扩展处理器、基于至强的计算群集以及即将推出的英特尔独立GPU系列,包括代号为“Ponte Vecchio”的GPU。英特尔和Katana Graph将利用高性能、横向扩展的并行计算,帮助客户以无与伦比的效率解决大规模非结构化数据问题。
大规模、非结构化数据集经常应用于社交网络分析、安全和认证、电子芯片设计工具、生物医学和制药应用(基因网络分析和医学知识图形挖掘)以及用于模拟传染病传播的流行病学研究中。英特尔广泛的技术生态系统可以帮助客户在数据周期的每个阶段实现分析加速。例如,英特尔至强可扩展处理器可以高速分析大量数据,同时英特尔傲腾持久内存技术可以帮助客户克服数据移动和存储瓶颈。
“为了对大型非结构化数据进行深入分析并大规模使用,需要在CPU和GPU上同时部署和执行。我们与Katana Graph的合作将加快图形分析在英特尔产品的应用,包括市场领先的英特尔至强可扩展处理器以及即将推出的GPU产品,使更多客户从图形计算中受益,”英特尔公司架构、图形与软件副总裁、机器学习性能总经理Wei Li表示。
Katana Graph引擎是纵向扩展和横向扩展分析领域的佼佼者,它可以在多种平台和技术组合上运行,包括x86 CPU的大型计算集群、具有英特尔傲腾持久内存的大型内存系统、单节点或多节点GPU平台或这些技术的任意组合。此外,它还可以扩展到生产集群中的数百台机器上。
Katana Graph的首席执行官兼联合创始人Keshav Pingali表示:“在大型、非结构化数据集上进行计算是未来的范例。与该领域的其他公司不同,Katana有专门的高级编程模型以及针对处理图形和超图应用程序的运行系统。这就是为什么我们的分析库比其他供应商的解决方案快几个数量级的原因。我们很高兴能与英特尔合作,为我们共同的客户带来高性能、可扩展的图形计算。”
Katana Graph引擎已经被客户使用,包括:
好文章,需要你的鼓励
OpenAI、Anthropic和Google的AI代码助手现在能够在人工监督下连续工作数小时,编写完整应用、运行测试并修复错误。但这些工具并非万能,可能会让软件项目变得复杂。AI代码助手的核心是大语言模型,通过多个LLM协作完成任务。由于存在上下文限制和"注意力预算"问题,系统采用上下文压缩和多代理架构来应对。使用时需要良好的软件开发实践,避免"氛围编程",确保代码质量和安全性。研究显示经验丰富的开发者使用AI工具可能反而效率降低。
这项研究由北京交通大学研究团队完成,系统阐述了人工智能智能体从"流水线"范式向"模型原生"范式的转变。研究表明,通过强化学习,AI可以自主学会规划、使用工具和管理记忆等核心能力,而不再依赖外部脚本。论文详细分析了这一范式转变如何重塑深度研究助手和GUI智能体等实际应用,并探讨了未来多智能体协作和自我反思等新兴能力的发展方向。
英伟达与AI芯片竞争对手Groq达成非独家授权协议,将聘请Groq创始人乔纳森·罗斯、总裁桑尼·马德拉等员工。据CNBC报道,英伟达以200亿美元收购Groq资产,但英伟达澄清这并非公司收购。Groq开发的LPU语言处理单元声称运行大语言模型速度快10倍,能耗仅为十分之一。该公司今年9月融资7.5亿美元,估值69亿美元,为超200万开发者的AI应用提供支持。
Prime Intellect团队发布开源AI训练全栈INTELLECT-3,这个106亿参数模型在数学、编程等测试中超越多个大型前沿模型。团队完全开源了包括prime-rl训练框架、环境库、代码执行系统在内的完整基础设施,为AI研究社区提供了高质量的训练工具,推动AI技术民主化发展。