英特尔今天透露,研究人员正在使用英特尔的神经形态芯片开发机器人的人造皮肤,这也是神经形态芯片最早期的实际应用之一。
英特尔正在研究新的芯片架构以保持自己的长期竞争优势,神经形态计算正是英特尔活跃的领域之一,这是一种新的芯片类型,其晶体管会按照神经元进行建模,以更快地运行人工智能模型。
迄今为止,英特尔已经研究出了一个名为Loihi的神经形态芯片,有20亿个晶体管。据英特尔称,这个芯片解决某些问题的速度是常规处理器的1000倍,而功耗却降低了10000倍,而且在今天公布的人造皮肤项目中,Loihi起到了关键的作用。
该项目中,新加坡国立大学的研究人员开发了一种名为ACES的“电子皮肤”,让机器人在接触到物体的时候可以进行检测和感知。ACES还可以确定给定对象的形状、纹理和硬度,速度比人类眨一下眼睛还快10倍。该项目将为机器手臂等机械提供更多有关环境的数据,帮助做出更好的决策。
ACES项目研究人员采用了基于云的Loihi芯片来处理来自人造皮肤的感官读数,并利用这个机会将这项技术与传统芯片进行了对比。
英特尔称,Loihi芯片在一项涉及使用人造皮肤和AI读取盲文字母的实验中,准确性达到92%以上,功耗却比某个“标准冯·诺依曼处理器”低20倍。在另一项实验中,Loihi击败了某款“顶级”GPU,功耗低45倍。
英特尔神经形态计算实验室负责人Mike Davies表示:“这项工作正在生成越来越多的结果显示,神经形态计算可以显着降低延迟和功耗。”
人造皮肤并不是英特尔Loihi所针对的唯一场景,而是涵盖所有互连设备,从智能音箱到工业传感器等,这些需要使用小型车载电池本地运行AI模型的设备。如果神经形态处理器以执行任务所需的功耗比传统硅芯片低几十倍,那么对于市场来说将会非常具有吸引力。
特别是随着机器学习的普及,而且越来越多的手机制造商正在将AI芯片集成到手机中,英特尔此前曾表示,未来将把Loihi的体积缩小到可以用于移动设备中。
数据中心是英特尔关注的另一个市场。英特尔正在研究在服务器机架中部署Loihi芯片,瞄准那些希望优化本地AI基础设施的企业,其中公有云运营商可能会非常感兴趣。
英特尔通过与学术界合作开展像ACES人造皮肤这样的项目,来收集有价值的技术反馈来优化Loihi芯片,同时也通过打造一些实际案例来吸引潜在客户。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。