北京,2020年5月21日——企业级混合云服务商青云QingCloud日前宣布,其容器公有云服务QKE(QingCloud KubeSphere Engine)再次升级,新增GPU计算节点与CPU指令集配置,可以更轻松地处理大规模并发计算,高效、低延迟地完成推理类场景、深度学习、机器学习、图像识别中的计算任务,轻松承载AI人工智能应用的开发与运行。基于此,青云QingCloud将为企业构建AI生态提供更为坚实的基础支撑。
随着数字经济的不断发展, 企业数字化已经是大势所趋。因此,企业需要更为灵活、敏捷的IT架构,帮助自己重构开发运维流程,最大程度提高应用开发效率并降低IT生产环境运维成本。同时,容器技术日渐兴起,有效联合了过去各自独立的IT开发与运维环节,切实帮助企业快速构建云原生应用,实现微服务和DevOps落地,从而加快业务创新迭代。
早在2016年,青云QingCloud便率先推出业界首创的、采用一套架构同时支持虚拟主机和容器主机的技术;2018年7月,青云QingCloud推出KubeSphere容器平台,并于同年12月13日开启公测,以帮助用户快速构建、部署与运维容器架构。2019年6月,青云QingCloud将KubeSphere在公有云平台交付,为企业提供容器云(QKE)服务。
青云QingCloud旗下KubeSphere容器平台基于Kubernetes构建,提供托管的原生Kubernetes集群、极简的人机交互实现CI/CD、微服务、以及集群运维管理,能够帮助用户实现极简开发、强劲支持和高效交付,从而更敏捷地构建云原生应用,并可一站式实现应用全生命周期的统一管理。KubeSphere容器平台一经问世便广受好评,在银行、保险、制造、互联网等行业的生产环境中都得以顺利部署应用并产生价值。
相较于原生的Kubernetes集群,KubeSphere提供了更多完善易用的开发工具集,能够实现极简开发、强劲支持和高效交付,可以帮助用户解除核心业务开发以外的平台工作负担。如果企业没有数据中心,则可以在QingCloud公有云上直接使用QKE,一站式获得从IaaS到PaaS的全栈容器服务。
此次QKE升级,一方面支持新增了GPU计算节点与CPU指令集的配置,能高效完成机器学习、深度学习、图像识别等AI计算任务,高性能地承载企业大规模并行计算需求。同时还新增无感热升级功能,通过滚动升级的方式,令主机在无需停机、应用无需停服的状态下完成升级,有效保障企业业务的连续性。
青云QingCloud作为一家以技术见长的企业级云服务商,认准了容器技术的价值与未来。在新基建浪潮下,青云QingCloud还将继续优化云端技术,加速企业云原生转型,并不断将技术沉淀与最佳实践融入到数字世界的愿景中,为容器生态的构建、人工智能时代的加速,以及数字世界的最终实现贡献力量。
好文章,需要你的鼓励
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。
FuseLIP是一项突破性研究,提出了通过早期融合离散标记实现多模态嵌入的新方法。与传统CLIP模型使用独立编码器不同,FuseLIP采用单一编码器同时处理图像和文本标记,实现了更自然的模态交互。研究证明,这种早期融合方法在多种多模态任务上表现优异,特别是在需要理解图像结构而非仅语义内容的任务上。研究还开发了创新的数据集和评估任务,为多模态嵌入研究提供了宝贵资源。
ByteDance与浙江大学合作开发的MERIT是首个专为多语言多条件语义检索设计的基准数据集,包含320,000条跨5种语言的查询和135,000个产品。研究发现现有模型在处理多条件查询时过度关注全局语义而忽略特定条件元素,为此提出CORAL框架,通过嵌入重建和对比学习相结合的方式,使检索性能提升45.9%。这项研究不仅识别了现有方法的关键局限性,还为多条件交错语义检索领域的未来研究奠定了基础。