英特尔今天分享了有关神经形态计算系统Pohoiki Springs的详细信息,该系统利用1亿个人工神经元来执行处理任务。
神经形态硬件通过模仿人脑处理信息以加快计算的方式,目前这项技术仍处于试验阶段,但是英特尔和该领域的其他参与者希望,这个受人类大脑启发的系统有望提供比传统服务器更高的性能,以处理人工智能和机器学习等工作负载。
Pohoiki Springs让英特尔朝着这个目标又买进了一步。该系统拥有1亿个神经元,大小约为5台标准服务器,功耗为300瓦,封装了768颗英特尔Loihi神经形态芯片,构成了机器的大脑。
Loihi采用14纳米设计,其中包含20亿多个晶体管,组成130000个人工神经元,这些神经元又构成了总共124个核心,核心在4个附加控制核心的帮助下协调操作。
像Loihi这样的神经形态芯片与其他AI优化的处理器相比,深度学习工作负载的运行方式有所不同。英特尔芯片上的人造神经元彼此之间紧密相连,就像有机神经元一样,以相对简单的信号(也就是spike脉冲信号)形式传输数据。脉冲信号是一种非常有效的信息传递媒介,让Loihi芯片解决某些问题的能力比普通处理器快了10000倍,而功耗却降低了10000倍。
神经形态芯片设计还具有另一个明显优势,常规处理器是把处理的信息保存在单独的内存区域中,而Loihi的内存则直接位于人工神经元和突触中,使数据可以更快地传输到需要的地方。
英特尔神经形态计算实验室主任Mike Davies在新闻发布会上说:“我们以一种完全不同的方式计算神经网络。”
Pohoiki Springs的768个板载Loihi单元,代表了英特尔在可扩展性的一个重要里程碑,因此此前英特尔最大的神经形态系统只支持68个芯片。英特尔将通过云把Pohoiki Springs提供给90个正在开发神经形态硬件算法的学术团体和企业。在新闻发布会上,Davies将算法和软件称为这项技术实现商业化的一大挑战。
英特尔在商业化方面准备充分。据Davies说,Loihi的第一个应用将是边缘处理用例,例如对来自摄像头和自动驾驶汽车传感器的数据进行实时分析。他说,英特尔希望随着时间的推移,半导体制造技术的进步将能使Loihi体系结构进一步缩小,从而可以用于移动设备和便携式计算机。
对边缘处理的关注,是英特尔不仅要开发大型神经形态系统(例如Pohoiki Springs),还要开发小型系统的原因。本周初,英特尔公布了最新研究成果。周一英特尔表示,已经成功地训练Loihi芯片识别10种有害化学物质的气味。
与此同时,英特尔也在追求利用多种全新芯片设计方法确保自己的长期竞争力。最近英特尔斥资20亿美元收购了数据中心AI加速器初创公司Habana Labs。此外,英特尔还在开发量子计算芯片和优化这些芯片的技术,例如Horse Ridge低温控制系统。
好文章,需要你的鼓励
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
AMD首席执行官苏姿丰在纽约金融分析师日活动中表示,公司已准备好迎接AI浪潮并获得传统企业计算市场更多份额。AMD预计未来3-5年数据中心AI收入复合年增长率将超过80%,服务器CPU收入份额超过50%。公司2025年预期收入约340亿美元,其中数据中心业务160亿美元。MI400系列GPU采用2纳米工艺,Helios机架系统将提供强劲算力支持。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。