英特尔今天分享了有关神经形态计算系统Pohoiki Springs的详细信息,该系统利用1亿个人工神经元来执行处理任务。
神经形态硬件通过模仿人脑处理信息以加快计算的方式,目前这项技术仍处于试验阶段,但是英特尔和该领域的其他参与者希望,这个受人类大脑启发的系统有望提供比传统服务器更高的性能,以处理人工智能和机器学习等工作负载。
Pohoiki Springs让英特尔朝着这个目标又买进了一步。该系统拥有1亿个神经元,大小约为5台标准服务器,功耗为300瓦,封装了768颗英特尔Loihi神经形态芯片,构成了机器的大脑。
Loihi采用14纳米设计,其中包含20亿多个晶体管,组成130000个人工神经元,这些神经元又构成了总共124个核心,核心在4个附加控制核心的帮助下协调操作。
像Loihi这样的神经形态芯片与其他AI优化的处理器相比,深度学习工作负载的运行方式有所不同。英特尔芯片上的人造神经元彼此之间紧密相连,就像有机神经元一样,以相对简单的信号(也就是spike脉冲信号)形式传输数据。脉冲信号是一种非常有效的信息传递媒介,让Loihi芯片解决某些问题的能力比普通处理器快了10000倍,而功耗却降低了10000倍。
神经形态芯片设计还具有另一个明显优势,常规处理器是把处理的信息保存在单独的内存区域中,而Loihi的内存则直接位于人工神经元和突触中,使数据可以更快地传输到需要的地方。
英特尔神经形态计算实验室主任Mike Davies在新闻发布会上说:“我们以一种完全不同的方式计算神经网络。”
Pohoiki Springs的768个板载Loihi单元,代表了英特尔在可扩展性的一个重要里程碑,因此此前英特尔最大的神经形态系统只支持68个芯片。英特尔将通过云把Pohoiki Springs提供给90个正在开发神经形态硬件算法的学术团体和企业。在新闻发布会上,Davies将算法和软件称为这项技术实现商业化的一大挑战。
英特尔在商业化方面准备充分。据Davies说,Loihi的第一个应用将是边缘处理用例,例如对来自摄像头和自动驾驶汽车传感器的数据进行实时分析。他说,英特尔希望随着时间的推移,半导体制造技术的进步将能使Loihi体系结构进一步缩小,从而可以用于移动设备和便携式计算机。
对边缘处理的关注,是英特尔不仅要开发大型神经形态系统(例如Pohoiki Springs),还要开发小型系统的原因。本周初,英特尔公布了最新研究成果。周一英特尔表示,已经成功地训练Loihi芯片识别10种有害化学物质的气味。
与此同时,英特尔也在追求利用多种全新芯片设计方法确保自己的长期竞争力。最近英特尔斥资20亿美元收购了数据中心AI加速器初创公司Habana Labs。此外,英特尔还在开发量子计算芯片和优化这些芯片的技术,例如Horse Ridge低温控制系统。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。