英特尔今天分享了有关神经形态计算系统Pohoiki Springs的详细信息,该系统利用1亿个人工神经元来执行处理任务。
神经形态硬件通过模仿人脑处理信息以加快计算的方式,目前这项技术仍处于试验阶段,但是英特尔和该领域的其他参与者希望,这个受人类大脑启发的系统有望提供比传统服务器更高的性能,以处理人工智能和机器学习等工作负载。
Pohoiki Springs让英特尔朝着这个目标又买进了一步。该系统拥有1亿个神经元,大小约为5台标准服务器,功耗为300瓦,封装了768颗英特尔Loihi神经形态芯片,构成了机器的大脑。
Loihi采用14纳米设计,其中包含20亿多个晶体管,组成130000个人工神经元,这些神经元又构成了总共124个核心,核心在4个附加控制核心的帮助下协调操作。
像Loihi这样的神经形态芯片与其他AI优化的处理器相比,深度学习工作负载的运行方式有所不同。英特尔芯片上的人造神经元彼此之间紧密相连,就像有机神经元一样,以相对简单的信号(也就是spike脉冲信号)形式传输数据。脉冲信号是一种非常有效的信息传递媒介,让Loihi芯片解决某些问题的能力比普通处理器快了10000倍,而功耗却降低了10000倍。
神经形态芯片设计还具有另一个明显优势,常规处理器是把处理的信息保存在单独的内存区域中,而Loihi的内存则直接位于人工神经元和突触中,使数据可以更快地传输到需要的地方。
英特尔神经形态计算实验室主任Mike Davies在新闻发布会上说:“我们以一种完全不同的方式计算神经网络。”
Pohoiki Springs的768个板载Loihi单元,代表了英特尔在可扩展性的一个重要里程碑,因此此前英特尔最大的神经形态系统只支持68个芯片。英特尔将通过云把Pohoiki Springs提供给90个正在开发神经形态硬件算法的学术团体和企业。在新闻发布会上,Davies将算法和软件称为这项技术实现商业化的一大挑战。
英特尔在商业化方面准备充分。据Davies说,Loihi的第一个应用将是边缘处理用例,例如对来自摄像头和自动驾驶汽车传感器的数据进行实时分析。他说,英特尔希望随着时间的推移,半导体制造技术的进步将能使Loihi体系结构进一步缩小,从而可以用于移动设备和便携式计算机。
对边缘处理的关注,是英特尔不仅要开发大型神经形态系统(例如Pohoiki Springs),还要开发小型系统的原因。本周初,英特尔公布了最新研究成果。周一英特尔表示,已经成功地训练Loihi芯片识别10种有害化学物质的气味。
与此同时,英特尔也在追求利用多种全新芯片设计方法确保自己的长期竞争力。最近英特尔斥资20亿美元收购了数据中心AI加速器初创公司Habana Labs。此外,英特尔还在开发量子计算芯片和优化这些芯片的技术,例如Horse Ridge低温控制系统。
好文章,需要你的鼓励
研究显示,英国中小企业虽占企业总数99.9%,但因资源与专业不足,难以有效应对网络攻击。CyCOS项目旨在通过构建支持社区,帮助中小企业提升网络防御能力。
上海交大研究团队开发的VideoREPA是一种突破性的视频生成框架,通过令牌关系蒸馏技术将视频理解模型中的物理知识转移到文本到视频(T2V)扩散模型中。与传统方法不同,VideoREPA关注空间和时间关系的对齐,使生成的视频更符合物理常识。实验表明,这种方法在VideoPhy基准测试中将物理常识分数提高了24.1%,明显优于现有技术。该研究为创建更真实的AI生成视频提供了新思路,展示了理解能力与生成质量间的密切关联。
Wispr 的 Flow 是一款创新的 iOS 语音输入软件,借助 AI 技术能将语音无缝转换为精美文字,每周免费 2000 字,支持 100 多种语言,并能实现多设备同步。
浙江大学和莫纳什大学研究团队开发了PM-Loss,一种用于改进前馈式3D高斯分布渲染的新型正则化损失函数。研究针对深度图在物体边界处的不连续性问题,通过预训练Transformer模型预测的点图提供几何先验知识,实现了更平滑、准确的3D场景重建。实验表明,PM-Loss在多个数据集上显著提升了渲染质量,PSNR提高至少2dB,特别改善了物体边界处的细节表现。该方法易于集成到现有模型中,无需修改架构,为3D视觉和图形学领域提供了新的研究思路。