一大批大型科技公司将为Linux Foundation主导的新计划提供支持,该计划旨在促进“机密计算”概念也就是在使用时对数据进行加密。
Linux Foundation在一份声明中表示,新成立的Confidential Computing Consortium机密计算联盟将专注于方法标准化以确保可以在内存处理过程中加密数据而不会暴露给计算机系统的其他部分,其目的是“减少敏感数据的曝光,为用户提供更好的控制权和透明度”。
众所周知,使用中的数据是数据加密领域的一个弱点。加密静态数据和加密传输中的数据,这个流程已经存在整个科技行业得到广泛实施,但企业在处理信息时没有任何可靠的方法来保护信息,这就是机密计算联盟希望解决的问题。
“机密计算”一词是由微软创造,微软也是该联盟的主要支持者和创始成员之一,其他成员还包括阿里巴巴、Arm、百度、谷歌云、IBM、英特尔、红帽和腾讯。
这些科技公司寄希望于一个名为Open Enclave Software Development Kit的开源框架,该框架最初是由微软开发的,用于构建可以运行在多种类型计算机体系结构上的所谓“可信执行环境应用”。
Open Enclave仍处于开发阶段,但由于可信执行环境已经被普遍采用,因此相信进展会相当快。可信执行环境指的是计算机芯片上的一个安全区域,用于加密芯片上加载的数据和代码,使处理器的其他部分无法访问这些数据。换句话说,可信执行环境提供了一个隔离的执行环境来保护正在使用中的数据,Open Enclave SDK则是利用这个环境开发应用的一个通用框架。
微软首席技术官Mark Russinovich在一份声明中表示:“Open Enclave SDK已经成为可信执行环境开发人员的一个主流工具,这是保护使用中数据的最有前途的领域之一。我们希望这对联盟是有帮助的,能够将这些工具交给更多的开发人员使用,并加速应用的开发和采用,从而提高跨云和边缘计算的可信性和安全性。”
Constellation Research分析师Holger Mueller表示对机密计算项目的欢迎,并称安全性和隐私性对基于云的下一代应用来说至关重要。
他说:“开发人员针对不同的安全机制维护不同的代码,例如这里我们所说的可信区域,因此很高兴看到Linux Foundation成立了一个跨软件、云基础设施和硬件提供支持的工作组。企业高管们会乐于看到任何能让他们更专注于应用实际功能的事情。”
该联盟还将致力于其他很多迄今尚未宣布的开源技术和工具以实现机密计算。联盟的确切结构尚未最终确定,但将由理事会和技术咨询委员会领导,并为其主导的每个项目设立单独的技术监督委员会。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。