英特尔公司今天宣布推出基于旗下原型Loihi芯片的神经形态计算系统,旨在模拟人类大脑处理问题的方式。
英特尔实验室主管Rich Uhlig今天在DARPA ERI峰会上表示,该系统的代号为“Pohoiki Beach”,含64个Loihi芯片,他称Pohoiki Beach具有相当于800万个神经元的计算能力。英特尔计划向60个研究合作伙伴提供新的Pohoiki Beach系统作为新兴架构的实验,Pohoiki Beach的新兴架构旨在解决人工智能中一些极为复杂的问题。
英特尔曾于2017年9月宣布推出Loihi芯片,其时曾称Loihi芯片能够模仿人类大脑的功能因而能够提供令人难以置信的学习速度。Loihi原型芯片可以使用已拥有的知识来推断新数据,进而可以不断飞速地加快学习过程。
Loihi芯片基于“神经形态计算”架构,该架构的灵感来自科学家目前对人类大脑的理解及大脑解决问题的方式。
英特尔的Loihi芯片利用人类学习灵感改善人工智能,其他研究人员也做过类似的尝试。 Qualcomm Technologies Inc.(高通)几年前就开始生产神经形态芯片。 IBM公司则打造过与人类大脑相似的人工神经元。Alphabet Inc.的DeepMind团队也曾利用偏重自然学习的深度学习方法,自然学习类似于孩子学习新技能的方式。
英特尔表示,Loihi芯片处理信息的速度比传统中央处理单元快1000倍,效率则高10,000倍,Loihi适用于稀疏编码、图搜索和约束满足问题等专业应用。
Loihi芯片
英特尔表示, 由于Loihi的功耗极低,Pohoiki Beach目前的真正潜力在于解决“物联网”和其他独立设备的一些非常困难的计算问题。
Applied Brain Research Inc.(应用大脑研究)是英特尔的研究合作伙伴。Applied Brain Research的联合首席执行官Chris Eliasmith表示,“我们用Loihi芯片运行实时深度学习基准测试,功耗比专用物联网推理硬件的功耗降低了109倍,比专用物联网推理硬件的功耗则降低了五倍。另外还有更好的一点,我们扩展网络50倍时,Loihi能持续保证实时性能结果且只多用了30%的功率,而物联网硬件在这种情况下的功率增加了500%,也不能实时。”
英特尔表示,相信基于Loihi的系统有可能在自动驾驶汽车和智能家居等应用中的实现速度和效率达到几个“数量级”的增长,这些应用需要处理大量的数据,以便获得真实、实时的数据洞悉。
Constellation Research Inc.的分析师Holger Mueller告诉记者,英特尔神经形态芯片架构的节能能力是最值得关注的一点。他表示, “这一点对于基于AI芯片组平台的基础架构即服务供应商来说是非常有益的。”
Uhlig补充表示,Pohoiki Beach系统只是英特尔神经形态计算研究的基础,英特尔计划今年晚些时候发布一个更强大的Pohoiki Springs系统,Pohoiki Springs可以扩展到1亿个神经元。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。