英特尔公司今天宣布推出基于旗下原型Loihi芯片的神经形态计算系统,旨在模拟人类大脑处理问题的方式。
英特尔实验室主管Rich Uhlig今天在DARPA ERI峰会上表示,该系统的代号为“Pohoiki Beach”,含64个Loihi芯片,他称Pohoiki Beach具有相当于800万个神经元的计算能力。英特尔计划向60个研究合作伙伴提供新的Pohoiki Beach系统作为新兴架构的实验,Pohoiki Beach的新兴架构旨在解决人工智能中一些极为复杂的问题。
英特尔曾于2017年9月宣布推出Loihi芯片,其时曾称Loihi芯片能够模仿人类大脑的功能因而能够提供令人难以置信的学习速度。Loihi原型芯片可以使用已拥有的知识来推断新数据,进而可以不断飞速地加快学习过程。
Loihi芯片基于“神经形态计算”架构,该架构的灵感来自科学家目前对人类大脑的理解及大脑解决问题的方式。
英特尔的Loihi芯片利用人类学习灵感改善人工智能,其他研究人员也做过类似的尝试。 Qualcomm Technologies Inc.(高通)几年前就开始生产神经形态芯片。 IBM公司则打造过与人类大脑相似的人工神经元。Alphabet Inc.的DeepMind团队也曾利用偏重自然学习的深度学习方法,自然学习类似于孩子学习新技能的方式。
英特尔表示,Loihi芯片处理信息的速度比传统中央处理单元快1000倍,效率则高10,000倍,Loihi适用于稀疏编码、图搜索和约束满足问题等专业应用。
Loihi芯片
英特尔表示, 由于Loihi的功耗极低,Pohoiki Beach目前的真正潜力在于解决“物联网”和其他独立设备的一些非常困难的计算问题。
Applied Brain Research Inc.(应用大脑研究)是英特尔的研究合作伙伴。Applied Brain Research的联合首席执行官Chris Eliasmith表示,“我们用Loihi芯片运行实时深度学习基准测试,功耗比专用物联网推理硬件的功耗降低了109倍,比专用物联网推理硬件的功耗则降低了五倍。另外还有更好的一点,我们扩展网络50倍时,Loihi能持续保证实时性能结果且只多用了30%的功率,而物联网硬件在这种情况下的功率增加了500%,也不能实时。”
英特尔表示,相信基于Loihi的系统有可能在自动驾驶汽车和智能家居等应用中的实现速度和效率达到几个“数量级”的增长,这些应用需要处理大量的数据,以便获得真实、实时的数据洞悉。
Constellation Research Inc.的分析师Holger Mueller告诉记者,英特尔神经形态芯片架构的节能能力是最值得关注的一点。他表示, “这一点对于基于AI芯片组平台的基础架构即服务供应商来说是非常有益的。”
Uhlig补充表示,Pohoiki Beach系统只是英特尔神经形态计算研究的基础,英特尔计划今年晚些时候发布一个更强大的Pohoiki Springs系统,Pohoiki Springs可以扩展到1亿个神经元。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。