英特尔设想未来处理器是由紧凑的专用模块构建的,每个模块都针对不同的计算任务进行了优化。
英特尔希望通过近日在旧金山举行公布的三项新技术来实现这一目标,其中最引人关注的是英特尔所谓的Omni-Directional Interconnect(ODI),这项技术让工程师能够以类似乐高的方式构建芯片。
如今大多数处理器采用的是单片设计,晶体管和支撑元件都被蚀刻成独立的单个硅芯片,芯片行业几十年来一直采用这种方法,但现在摩尔定律的终结使得提高处理速度变得更加困难了,因此半导体制造商需要利用新的策略来满足买家的期望。
这就是ODI的用武之地。ODI技术消除了单个芯片上实现所有功能的需要,使工程师能够利用英特尔所谓的小芯片模块组装处理器。
这种方法的一个好处是具有灵活性。ODI让英特尔能够将通常单独出售的不同芯片进行混搭,成为功能强大、高度定制的处理器,并针对特定应用进行优化。ODI的另一个优点是有助于降低制造成本,如果模块化处理器中的一个小芯片有缺陷,只需要丢弃它并更换为另一个小芯片就行了,而不需要废弃掉整个处理器。
ODI技术通过融合英特尔现有的两种技术来实现这种模块化,首先是EMIB,可以像拼图一样连接多个小芯片,而另一个是Foveros,允许小芯片以三维结构彼此堆叠。
ODI技术在设计上有了重大提升,让英特尔大大增加了小芯片之间传输能量和数据的电子连接,这使得ODI带来了更高的带宽和更低的延迟,同时释放了更多空间可容纳更多晶体管。
除了ODI技术之外英特尔还推出了其他两项新技术,一个是Co-EMIB,一种连接Foveros处理器(由垂直堆叠芯片组堆叠组成)的方法,另一个是MDIO,是对某些英特尔处理器交换数据接口的改进。英特尔称MDIO让带宽密度提高到是目前技术的两倍多。
英特尔的模块化三维芯片可能将在可预见的未来投入市场。英特尔曾在12月的时候表示,希望最早在今年开始出货基于Foveros的模块化处理器。
好文章,需要你的鼓励
五家光学存储初创公司正在开发长期存储技术,旨在用超过100年寿命的光学介质替代只有5-7年寿命的磁带。这些公司包括Cerabyte、Ewigbyte、HoloMem、Optera和SPhotonix,它们的技术类似微软Project Silica项目。光学存储介质具有更强的化学、冲击、辐射、水和热抗性,同时保持低能耗和高容量特性。
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
Nutanix发布分布式主权云产品组合更新,为多云环境提供更安全的运营和管理功能。该解决方案支持企业在分布式环境中灵活部署和治理基础设施,运行传统虚拟机、现代云原生和AI应用。新功能包括支持完全断网环境的暗站点管理、政府云集群正式发布、Kubernetes平台增强安全合规性、企业AI平台集成NVIDIA微服务,以及云平台新增跨站点灾难恢复能力,为用户提供统一管理和运营简化体验。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。