英特尔设想未来处理器是由紧凑的专用模块构建的,每个模块都针对不同的计算任务进行了优化。
英特尔希望通过近日在旧金山举行公布的三项新技术来实现这一目标,其中最引人关注的是英特尔所谓的Omni-Directional Interconnect(ODI),这项技术让工程师能够以类似乐高的方式构建芯片。
如今大多数处理器采用的是单片设计,晶体管和支撑元件都被蚀刻成独立的单个硅芯片,芯片行业几十年来一直采用这种方法,但现在摩尔定律的终结使得提高处理速度变得更加困难了,因此半导体制造商需要利用新的策略来满足买家的期望。
这就是ODI的用武之地。ODI技术消除了单个芯片上实现所有功能的需要,使工程师能够利用英特尔所谓的小芯片模块组装处理器。
这种方法的一个好处是具有灵活性。ODI让英特尔能够将通常单独出售的不同芯片进行混搭,成为功能强大、高度定制的处理器,并针对特定应用进行优化。ODI的另一个优点是有助于降低制造成本,如果模块化处理器中的一个小芯片有缺陷,只需要丢弃它并更换为另一个小芯片就行了,而不需要废弃掉整个处理器。
ODI技术通过融合英特尔现有的两种技术来实现这种模块化,首先是EMIB,可以像拼图一样连接多个小芯片,而另一个是Foveros,允许小芯片以三维结构彼此堆叠。
ODI技术在设计上有了重大提升,让英特尔大大增加了小芯片之间传输能量和数据的电子连接,这使得ODI带来了更高的带宽和更低的延迟,同时释放了更多空间可容纳更多晶体管。
除了ODI技术之外英特尔还推出了其他两项新技术,一个是Co-EMIB,一种连接Foveros处理器(由垂直堆叠芯片组堆叠组成)的方法,另一个是MDIO,是对某些英特尔处理器交换数据接口的改进。英特尔称MDIO让带宽密度提高到是目前技术的两倍多。
英特尔的模块化三维芯片可能将在可预见的未来投入市场。英特尔曾在12月的时候表示,希望最早在今年开始出货基于Foveros的模块化处理器。
好文章,需要你的鼓励
Akamai的分布式边缘架构从设计之初就以韧性为核心,全球平台通过跨区域负载均衡和智能路由技术,确保即使某些节点出现故障,流量也能无缝切换至可用节点。
卡内基梅隆大学联合Adobe开发出革命性的NP-Edit技术,首次实现无需训练数据对的AI图像编辑。该技术通过视觉语言模型的语言反馈指导和分布匹配蒸馏的质量保障,让AI仅用4步就能完成传统50步的编辑任务,在保持高质量的同时大幅提升处理速度,为图像编辑技术的普及应用开辟了全新道路。
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
复旦大学团队突破AI人脸生成"复制粘贴"痛点,开发WithAnyone模型解决传统AI要么完全复制参考图像、要么身份差异过大的问题。通过MultiID-2M大规模数据集和创新训练策略,实现保持身份一致性的同时允许自然变化,为AI图像生成技术树立新标杆。