英特尔设想未来处理器是由紧凑的专用模块构建的,每个模块都针对不同的计算任务进行了优化。
英特尔希望通过近日在旧金山举行公布的三项新技术来实现这一目标,其中最引人关注的是英特尔所谓的Omni-Directional Interconnect(ODI),这项技术让工程师能够以类似乐高的方式构建芯片。
如今大多数处理器采用的是单片设计,晶体管和支撑元件都被蚀刻成独立的单个硅芯片,芯片行业几十年来一直采用这种方法,但现在摩尔定律的终结使得提高处理速度变得更加困难了,因此半导体制造商需要利用新的策略来满足买家的期望。
这就是ODI的用武之地。ODI技术消除了单个芯片上实现所有功能的需要,使工程师能够利用英特尔所谓的小芯片模块组装处理器。
这种方法的一个好处是具有灵活性。ODI让英特尔能够将通常单独出售的不同芯片进行混搭,成为功能强大、高度定制的处理器,并针对特定应用进行优化。ODI的另一个优点是有助于降低制造成本,如果模块化处理器中的一个小芯片有缺陷,只需要丢弃它并更换为另一个小芯片就行了,而不需要废弃掉整个处理器。
ODI技术通过融合英特尔现有的两种技术来实现这种模块化,首先是EMIB,可以像拼图一样连接多个小芯片,而另一个是Foveros,允许小芯片以三维结构彼此堆叠。
ODI技术在设计上有了重大提升,让英特尔大大增加了小芯片之间传输能量和数据的电子连接,这使得ODI带来了更高的带宽和更低的延迟,同时释放了更多空间可容纳更多晶体管。
除了ODI技术之外英特尔还推出了其他两项新技术,一个是Co-EMIB,一种连接Foveros处理器(由垂直堆叠芯片组堆叠组成)的方法,另一个是MDIO,是对某些英特尔处理器交换数据接口的改进。英特尔称MDIO让带宽密度提高到是目前技术的两倍多。
英特尔的模块化三维芯片可能将在可预见的未来投入市场。英特尔曾在12月的时候表示,希望最早在今年开始出货基于Foveros的模块化处理器。
好文章,需要你的鼓励
这项研究由浙江大学、复旦大学等机构联合完成,提出了ReVisual-R1模型,通过创新的三阶段训练方法显著提升了多模态大语言模型的推理能力。研究发现优化的纯文本冷启动训练、解决强化学习中的梯度停滞问题、以及分阶段训练策略是关键因素。ReVisual-R1在各类推理基准测试中超越了现有开源模型,甚至在某些任务上超过了商业模型,为多模态推理研究开辟了新途径。
这项研究提出了一种名为"批评式微调"的创新方法,证明仅使用一个问题的批评数据就能显著提升大语言模型的推理能力。研究团队对Qwen和Llama系列模型进行实验,发现这种方法在数学和逻辑推理任务上都取得了显著提升,平均提高15-16个百分点,而且只需要强化学习方法1/20的计算资源。这种简单高效的方法为释放预训练模型的潜在推理能力提供了新途径。
新加坡国立大学研究团队开发了名为IEAP的图像编辑框架,它通过将复杂编辑指令分解为简单原子操作序列解决了当前AI图像编辑的核心难题。研究发现当前模型在处理不改变图像布局的简单编辑时表现出色,但在需要改变图像结构时效果差。IEAP框架定义了五种基本操作,并利用思维链推理技术智能分解用户指令,实验证明其性能显著超越现有方法,尤其在处理复杂多步骤编辑时。
Character AI的研究者开发出TalkingMachines系统,通过自回归扩散模型实现实时音频驱动视频生成。研究将预训练视频模型转变为能进行FaceTime风格对话的虚拟形象系统。核心创新包括:将18B参数的图像到视频DiT模型改造为音频驱动系统、通过蒸馏实现无错误累积的无限长视频生成、优化工程设计降低延迟。系统可让多种风格的虚拟角色与人进行自然对话,嘴型与语音同步,为实时数字人交互技术开辟了新可能。