“智慧医疗”的概念在全球广泛提出还不足10年,随着计算科技的发展,人们希望可以把互联网、物联网、人工智能等领先技术应用于医疗服务各个领域,引发医疗革命,快速提升医疗服务水平。
从互联网化、数字化再到智慧化,“互联网+医疗”、人工智能辅助诊断系统、“5G网络+医疗”等新鲜热词层出不穷,与理论研究的百花齐放相比,真正落地实践并赋能医疗系统效能提升的应用案例屈指可数。
2018年8月,为满足北京天坛医院生命科学领域科研需求,曙光在深入调研的基础上,为天坛医院量身打造了整套基于NVIDIA GPU的面向高通量基因组学数据处理与智能病理影像识别的高性能计算集群总体解决方案。
把充足计算力赋能于生物信息处理、医疗影像识别、智能测序、生物大数据处理等关键应用上,将原CPU集群上需用几天时间才可处理完成的数据集,处理用时降低到以分钟为单位。有效整合数据信息资源,缩短科研周期,降低科研成本,提高科研效率。
面对临床实验与临床研究中心研究的临床诊疗信息、组学数据(全基因组、外显子、RNA、蛋白质组数据)及高分辨影像数据的存储、处理和运算的需求。曙光依托高通量基因组学数据处理与智能病理影像识别系统项目建设,为天坛医院全面建设部署了生物信息分析系统、基因组数据管理软硬件系统和医学影像人工智能平台,服务于临床型科研工作中对人体生命活动的监测分析与规律发现,并通过搭建生物信息分析与基因检测系统,助推天坛医院全国性或地区性组学数据库的建立。
曙光HPC为天坛医院临床型科研工作提供的强力支撑,不仅强化了技术研究平台、助力优势资源的有效配置,更为天坛医院“智慧医疗”的发展提供了更多空间与可能。
科技部部长与美国驻华大使一行在调研国家神经系统疾病临床医学研究中心(天坛医院内)时,对人工智能和大数据领域的成果给予了高度肯定。北京市委书记蔡奇在调研天坛医院高通量基因组学数据处理与智能病理影像识别系统项目时,给予过“天坛医院要坚持科技兴医,建设智慧医院”的期望。目前,北京天坛医院已快速引入人工智能、大数据、云计算、物联网等先进技术,全力打造“智能就诊”、“智能护理”,给患者提供舒适的医疗环境。曙光高性能计算集群的引入和成功使用,为天坛医院的现代临床研究提供了独特而强有力的优势资源。
生物信息学的发展离不开一次次研究与实验,而临床医学研究依托高性能计算在专业领域也做出了突出贡献。曙光深耕高性能计算二十余年,不断突破创新,依托先进计算的前瞻动力和一站式解决方案的完备效力,为临床医学研究提供了有力的技术支撑,助力“智慧医疗”迈进充满挑战和无限想象新发展。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。