英特尔与西门子医疗(Siemens Healthineers)正在合作开发一种突破性的基于人工智能的的心脏MRI(磁共振成像)分割和分析模型,有望提供实时的心血管疾病诊断。英特尔和西门子医疗使用了第二代英特尔至强可扩展处理器进行人工智能推理,为技术专家、心脏病专家和放射科医生提供实时磁共振成像(MRI)推理结果。
英特尔公司物联网事业部生命科学与健康部门总经理David Ryan表示:“西门子医疗和英特尔有一个共同目标——利用人工智能技术,进一步改善医疗水平。通过在边缘部署集成了英特尔深度学习加速技术和英特尔Distribution of OpenVINO工具包的第二代英特尔至强可扩展处理器,数据在采集后将被即刻用于分析,从而实现实时的心脏MRI应用。”
在美国,心血管疾病导致了三分之一的死亡率——每分钟34例,每年高达1800万例。心脏MRI已经成为评估心脏功能、心室容积和心肌组织的黄金标准。
心脏病专家通常使用手动或半自动工具从心脏核磁共振成像(CMR)中提取定量测量值,但这一步骤非常耗时且容易出错,并且在解读图像时容易受到主观性的影响。
西门子医疗高级副总裁Dorin Comaniciu 表示:“基于英特尔至强可扩展处理器,我们现在能够开发多个实时且用途关键的医学成像用例,例如心脏MRI等,并且无需额外增加成本和复杂的硬件加速器。”
使用人工智能的心脏模型将为心脏病专家节省更多时间,使他们无需手动进行心室、心肌和心血池的图像分割。当扫描仪生成图像切片后,即刻在边缘进行基于人工智能技术的图像分割,使部署在边缘的计算系统能实时捕捉到产生的数据 ——这为人工智能推理带来了低延迟和高吞吐速度等优势,让医疗机构能够每天安全地为更多患者进行诊断服务。
生命科学与健康行业正在进行医疗数字化变革,通过利用人工智能,加快临床工作流程,提高准确性和诊断水平,在降低医院成本的同时,为医学研究提供更大的支持。人工智能可以快速提供解剖系统的可视化,并识别异常状况,这有助于临床医生进一步专注于患者护理。
当下,西门子医疗部署的大多数系统均采用了英特尔处理器,这使西门子医疗能够利用已有的基于CPU的基础架构来运行人工智能推理工作负载。西门子医疗和英特尔使用英特尔Distribution of OpenVINO工具包来优化、量化和执行模型。最终演示结果显示,速度实现了5倍以上的提升,且精度几乎毫无损耗。
英特尔深度学习加速技术是一套新的嵌入式处理器技术,能够加快深度学习用例的实现。它在英特尔AVX-512指令集中扩展了新的矢量神经网络指令(VNNI),该指令内置于第二代英特尔至强可扩展处理器中。过去,例如卷积这样的任务通常需要三条指令,现在只需一条指令就可以完成。该技术可以被应用于的目标工作负载包括图像识别、图像分割、语音识别、语言翻译和对象检测等。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。