英特尔在2019年世界移动通信大会(Mobile World Congress 2019)上发布了大量公告,包括其首个Snow Ridge客户、名为Hewitt Lake的全新英特尔Xeon处理器,以及5G流量加速器FGPA。
作者:Corinne Reichert
英特尔在巴塞罗那举行的2019年世界移动通信大会(MWC)上发布了一系列以5G为重点的公告,包括用于加速5G流量的现场可编程门阵列(FGPA)、Hewitt Lake SoC以及首批两个主要的Snow Ridge SoC客户。
据英特尔网络平台高级副总裁Sandra Rivera称,5G流量加速器产品——FGPA可编程加速卡N3000——与英特尔的CPU产品组合配对,可在其5G平台上处理高达100Gbps的网络流量。
N3000拥有110万个逻辑单元,低延迟9GB DDR4 DIMM内存,通过2个 Intel Ethernet融合网络适配器实现数据包处理的智能卸载,以及采用双插槽PCIe的小外形尺寸。
Rivera解释说,客户正在将该产品用于虚拟化RAN、前传(fronthaul)和核心平台实施。
Rivera对ZDNet表示:“该产品将在未来几个月推出,我们已经看到了许多希望构建其5G和边缘基础设施的客户对此非常有兴趣,但他们当然明白5G的规格将随着时间的推移而不断发展——因此,FGPA为你提供高性能和灵活性之间的完美平衡。”
“这就是我们看到的FGPAs的用途所在,你还没有完全确定的规范,或者你有一个还在不断发展的规范,因为你想要建立这种灵活性,但是你也想开始部署。”
Rivera补充说,在MWC期间将会有关于使用N3000可编程加速卡以及英特尔5G CPU产品组合客户的进一步公告。
英特尔还宣布推出下一代英特尔Xeon D处理器Hewitt Lake,该处理器被称为高密度、高度集成的片上系统(SoC)。据英特尔称,Hewitt Lake的目标是网络边缘、平面、安全性和中档存储,使用了增加过的基础频率。
她表示:“Xeon D Hewitt Lake SoC真正帮助我们的客户推进他们的5G和边缘扩建策略,你会看到几款展示Xeon D使用的产品,其性能比上一代产品更高。”
英特尔进一步宣传了其上个月在CES 2019上发布的10纳米的Snow Ridge SoC,据称其“专为5G无线接入和边缘计算而开发”,目前爱立信和中兴正在使用它。
Rivera表示:“我们有两个行业领导者,爱立信和中兴……使用Snow Ridge作为他们5G基站平台的一部分,他们将随着时间的推移推出这些产品。”
“Snow Ridge在一个非常有限的功率范围内以小巧的外形形成了强大的冲击力,它是一个高性能的数据包处理和控制平面处理SoC,它是一个10纳米的产品,我们将在今年下半年推出。”
Rivera补充表示,其他客户可能会在在MWC期间与Snow Ridge一起公开。
英特尔最近在其调制解调器产品组合中发布了四项新公告,其中第一项是开发毫米波芯片以提供与XMM 8160配对的射频解决方案,Rivera表示,这将是许多高带宽、低延迟5G用例所需要的。该芯片将在2019年下半年提供样品,预计将在2020年上市。
与Fibocom合作将看到英特尔使用XMM 8160为5G M.2模块提供支持,她表示“将用于广泛扩展的许多行业、工业应用、始终连接的PC、用于固定移动无线的CPE设备用例。”
第三,英特尔正在与Skyworks合作开发低于6GHz的频段,以结合英特尔的XMM 8160和Skyworks SkyOne前端模块。
Rivera表示:“他们已经构建了一个优化的前端模块,以配合我们的8160。”
“这使我们能够以高度优化的方式进入市场,以满足全球大量客户对低于6GHz的产品需求和平台需求。”
最后,英特尔表示,包括D-Link、Gemtek、Arcaduan和VVDN Technologies在内的客户将在英特尔XMM 7560 4G调制解调器上发布多个网关产品,并在2020年对5G XMM 8160进行“无缝升级”。
好文章,需要你的鼓励
DeepSeek 的 AI 模型在处理效率方面取得重大突破,可能对数据中心产生深远影响。尽管引发了科技股抛售,但业内专家认为,这项创新将推动 AI 应用普及,促进大规模和分布式数据中心基础设施需求增长。更高效的 AI 算法有望降低成本、扩大应用范围,从而加速数据中心行业发展。
Rivian 正全面推进 AI 技术整合,开发下一代电动车平台,以挑战特斯拉的市场地位。公司计划于 2025 年实现免手驾驶,2026 年达到 L3 级自动驾驶。Rivian 还将在车载系统中广泛应用 AI 技术,提供语音交互等功能,并计划推出更实惠的车型,扩大市场份额。
Postman 发布了 AI 代理构建器,这是一款创新的生成式 AI 工具。它允许开发者通过整合大语言模型、API 和工作流程来设计、构建、测试和部署智能代理。这一工具旨在简化 API 交互、优化工作流程,并支持创建能执行复杂任务的智能代理,标志着 API 优先的 AI 开发迈出了重要一步。
微软第二财季利润同比增长10%,人工智能年化收入达130亿美元。然而,云计算业务未达预期,下季度指引不及预期,导致盘后股价下跌。公司资本支出创新高,以满足AI和云需求。尽管Azure增长放缓,但微软对下半年增速加快持乐观态度。同时,中国AI初创公司DeepSeek的崛起引发业界对AI基础设施投资的重新审视。