英特尔的研究人员可能已经研制出了一种能够取代几十年来微处理器、存储芯片和其他逻辑电路一直使用的技术的替代品。
这项研究很重要,因为基于互补性氧化金属半导体(Complementary Metal-Oxide Semiconductor,CMOS)技术的芯片已经接近其潜力的顶峰。 CMOS芯片是建立在通过由绝缘栅极控制可切换的半导体电导彼此连接的晶体管基础之上的。
自20世纪60年代以来,这项技术一直为行业提供良好的性能,但近年来也成为一个限制因素。这项技术的小型化——为了将更多的晶体管封装到电路板上并提高其计算能力——正在变得越来越困难。
因此,为了打造更强大的微处理器,英特尔正致力于利用新的量子材料弥补CMOS的不足。英特尔研究人员称,一种名为“可扩展的节能型电动旋转轨道逻辑”技术可能就是这个问题的答案。
与CMOS相比,这种所谓的MESO技术有可能将微芯片的电压降低到CMOS的五分之一,当结合“超低睡眠状态功率”的时候,能效可以提高10到30倍。
英特尔研究人员在《自然》杂志上发表的一篇论文中这样写道:“我们正在寻找革命性的、而不是进化性的、超越了CMOS时代的计算方法。MESO是围绕低压互连和低压磁电机构建的,将量子材料创新与计算结合在一起。我们对我们取得的进展感到非常兴奋,期待着未来能够展示进一步降低电压的潜力。”
英特尔研究人员已经使用由加州大学伯克利分校Ramamoorthy Ramesh和劳伦斯伯克利国家实验室开发的巨型电子和量子材料构建了MESO原型设备。
更具体地说,MESO在室温下使用所谓的多铁材料,产生“自旋 - 轨道转换效应”。该材料是磁性的——也就是原子全部对齐,如同常见的永久性磁铁——和铁磁性的,这两种状态是耦合在一起的,这意味着如果你改变其中一个,也要改变另一个。
研究人员表示:“在MESO设备中,电场会改变或翻转整个材料中的偶极子电场,这会改变或翻转产生磁场的电子自旋,”研究人员说。
图注:多铁性材料铋-铁-氧化物的单晶。铋原子(蓝色)在立方体的每个面上形成具有氧原子(黄色)的立方晶格,并且在中心附近形成铁原子(灰色)。稍微偏离中心的铁与氧相互作用以形成电偶极子(P),耦合到原子(M)的磁自旋,从而翻转电场(E)偶极子也会让磁矩发生翻转。该材料中原子集体磁自旋对二进制位0和1进行编码,从而可进行信息存储和逻辑运算。
Constellation Research分析师Holger Mueller表示,英特尔的研究令人鼓舞,因为这对于不断打破微处理器发展障碍、满足下一代应用工作负载需求来说是十分必要的。
Mueller说:“通过MESO,英特尔向前迈出了关键一步,让多状态铁材料帮助打造更高效的计算平台。这是一个充满希望的开端,现在这项新技术必须在实际应用得到检验。”
然而,这可能还有很长一段路要走。尽管MESO原型设备显示出了具有前景的结果,但Ramesh表示,该技术仍处于初期阶段,还需要进行更多研究,实际设备仍有可能至少需要十年时间。
Ramesh说:“还有很多工作要做。今天的电脑电压是3伏。Nature论文中提到的这个设备电压达到了100毫伏。我们需要更好地去理解物理学。”
好文章,需要你的鼓励
软件开发瓶颈是现代企业面临的关键挑战。本文探讨了消除瓶颈的有效策略,包括优化沟通、提高可视化、自动化流程和培养共同责任文化。专家建议通过异步更新、看板管理和自动化工具来提高效率。同时强调了数据质量、跨团队协作和持续改进的重要性。文章还提到了新兴技术如AI在解决瓶颈问题中的潜在应用。
随着人工智能技术的发展,深度伪造内容在网络上大量涌现,可能对我们的健康造成潜在威胁。从虚假名人代言到有害的AI生成医疗建议,深度伪造正在助长一波危险的虚假信息浪潮。本文探讨了深度伪造在医疗保健领域的负面影响,以及如何在这个充满虚假信息的时代保护自己的健康。
INCYMO.AI 推出了一个革新性的 AI 驱动创意平台,专注于移动游戏广告制作。该平台基于 10 万多个市场验证广告的数据分析,通过 AI 技术为游戏营销人员提供创意构思和广告生成服务。在创意疲劳、用户获取成本上升和隐私限制的当前环境下,该平台为游戏营销开辟了一条数据驱动的全新道路。
Databricks 与 Palantir 签署合作协议,开发出更优的大语言模型微调方法,并与 Anthropic 达成为期五年的战略联盟,将 Claude 大语言模型整合到其数据湖平台中。此次合作将为企业客户提供更强大的 AI 能力,包括军工级安全性、高效的模型训练以及全面的数据治理,助力企业打造专属 AI 应用。