新特性:在近日举行的Microsoft Build大会上,Microsoft推出了 基于Project Brainwave的Azure机器学习硬件加速模型,并与Microsoft Azure Machine Learning SDK相集成以供预览。客户可以使用 Azure大规模部署的英特尔FPGA(现场可编程逻辑门阵列)技术,为其模型提供行业领先的人工智能AI推理性能。
“作为一家整体技术提供商,我们通过与Microsoft密切合作为人工智能提供支持。人工智能适用于从训练到推断,从语音识别到图像分析等各种使用场景,英特尔拥有广泛的硬件、软件和工具组合,可满足这些工作负载的需求。”——Daniel McNamara,英特尔公司副总裁兼可编程解决方案事业部总经理
意义:数据科学家和开发人员可以在全球最大的加速计算云中轻松地使用深度神经网络DNN处理各种实时工作负载,应用的领域涵盖制造、零售和医疗领域等。不论是在云计算还是边缘计算中,他们都可以利用英特尔FPGA来训练模型,并将其部署到Project Brainwave上。
重要性:Project Brainwave使用英特尔FPGA来提供实时人工智能,释放了可编程硬件的潜能并展示了人工智能的未来。基于 FPGA 的架构具有高吞吐和经济节能的特点:比如可以运行 ResNet 50——这是一种行业标准的DNN,需要近 80 亿次计算——而无需批处理。AI客户无需在高性能和低成本之间进行选择。
操作方法:通过使用Azure Machine Learning SDK for Python,客户可以重新训练基于ResNet 50的模型及其数据,专门处理图像识别任务。
对于实时AI工作负载,由于计算强度较高,因此需要专用的硬件加速器。英特尔FPGA支持Azure针对任务配置硬件,以实现峰值性能。
微软公司杰出工程师Doug Burger表示:“客户现在可以利用英特尔FPGA和英特尔至强技术,在云端和边缘使用微软的一系列AI突破性技术。这些新功能支持将AI集成到实时处理流程中,以利用Microsoft Azure和Microsoft AI的强大功能推动业务转型。”
用户可以根据Azure工作负载的特定要求进一步完善FPGA或完全改变其用途。采用英特尔FPGA和英特尔至强处理器开发的Azure架构支持根据用户的定制软件和硬件配置条款,通过加速AI实现创新。
Project Brainwave的限量预览版现已提供,用户可在本地访问Microsoft设计的基于英特尔FPGA的系统,后者充当Azure IoT Edge设备并连接到Azure IoT Hub。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
斯坦福与哈佛研究团队通过创新的"层次贝叶斯框架",首次从理性分析角度解释了AI学习策略转换机制。研究发现AI会在"记忆型"和"理解型"两种策略间理性选择,转换规律遵循损失-复杂度权衡原理。该理论框架仅用三个参数就能准确预测AI在不同条件下的行为表现,为AI系统的可控性和可预测性提供了重要理论基础。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
这项研究汇集了来自斯坦福大学、苏黎世联邦理工学院、隆德大学、加州大学旧金山分校等多所世界顶尖学府的11位医学专家,共同构建了医学AI领域的首个多模态情境学习评估标准。