新特性:在近日举行的Microsoft Build大会上,Microsoft推出了 基于Project Brainwave的Azure机器学习硬件加速模型,并与Microsoft Azure Machine Learning SDK相集成以供预览。客户可以使用 Azure大规模部署的英特尔FPGA(现场可编程逻辑门阵列)技术,为其模型提供行业领先的人工智能AI推理性能。
“作为一家整体技术提供商,我们通过与Microsoft密切合作为人工智能提供支持。人工智能适用于从训练到推断,从语音识别到图像分析等各种使用场景,英特尔拥有广泛的硬件、软件和工具组合,可满足这些工作负载的需求。”——Daniel McNamara,英特尔公司副总裁兼可编程解决方案事业部总经理
意义:数据科学家和开发人员可以在全球最大的加速计算云中轻松地使用深度神经网络DNN处理各种实时工作负载,应用的领域涵盖制造、零售和医疗领域等。不论是在云计算还是边缘计算中,他们都可以利用英特尔FPGA来训练模型,并将其部署到Project Brainwave上。
重要性:Project Brainwave使用英特尔FPGA来提供实时人工智能,释放了可编程硬件的潜能并展示了人工智能的未来。基于 FPGA 的架构具有高吞吐和经济节能的特点:比如可以运行 ResNet 50——这是一种行业标准的DNN,需要近 80 亿次计算——而无需批处理。AI客户无需在高性能和低成本之间进行选择。
操作方法:通过使用Azure Machine Learning SDK for Python,客户可以重新训练基于ResNet 50的模型及其数据,专门处理图像识别任务。
对于实时AI工作负载,由于计算强度较高,因此需要专用的硬件加速器。英特尔FPGA支持Azure针对任务配置硬件,以实现峰值性能。
微软公司杰出工程师Doug Burger表示:“客户现在可以利用英特尔FPGA和英特尔至强技术,在云端和边缘使用微软的一系列AI突破性技术。这些新功能支持将AI集成到实时处理流程中,以利用Microsoft Azure和Microsoft AI的强大功能推动业务转型。”
用户可以根据Azure工作负载的特定要求进一步完善FPGA或完全改变其用途。采用英特尔FPGA和英特尔至强处理器开发的Azure架构支持根据用户的定制软件和硬件配置条款,通过加速AI实现创新。
Project Brainwave的限量预览版现已提供,用户可在本地访问Microsoft设计的基于英特尔FPGA的系统,后者充当Azure IoT Edge设备并连接到Azure IoT Hub。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。