企业级云服务商青云QingCloud日前宣布,一站式云端大数据服务——QingMR全新升级。QingMR集成Spark与MapReduce双数据处理引擎及Apache Kylin极速海量数据OLAP分析引擎,通过统一的HDFS分布式数据存储系统及YARN调度系统,为用户提供灵活、高效、多模式的一站式云端大数据服务。针对AI开发场景,QingMR还提供了Python与R两种语言的运行环境,并预置了多个Anaconda发行版的数据科学包,为数据科学、机器学习和深度学习等AI开发场景,提供了强大的计算能力支撑。
自2015年发布第一款大数据服务开始,青云QingCloud在大数据领域的创新便从未停止,陆续推出Spark、Hadoop、Storm、HBase、ZooKeeper、Hive、SparkMR等一系列大数据服务。QingMR是青云QingCloud新一代云端大数据服务,是SparkMR的全新升级,能够提供计算、存储、分析、查询一站式全方位的大数据服务。
所谓一站式大数据服务,是指QingMR能够提供对数据的批量计算、流式计算与实时计算,并实现对计算结果的极速分析查询。全新升级的QingMR大数据服务包括“QingMR–Core”和“QingMR–Kylin”两个版本,其中Kylin版本基于国人主导的Apache顶级项目Apache Kylin的企业级大数据智能分析平台Kyligence Analytics Platform(KAP),提供PB级数据集的亚秒级查询能力,用户可体验极速海量数据OLAP分析引擎的强大与便捷。
QingMR通过QingCloud AppCenter交付部署,3分钟之内即可完成一个集群部署,并且能够通过可视化的方式完成服务的个性化定制,并提供完善的服务监控,真正实现一键部署、即刻使用。基于AppCenter框架内原生的应用感知机制,实现与其他大数据分析组件如ZooKeeper之间自动化的无缝集成。QingMR与QingStor对象存储平台也提供预置集成,用户通过简单的配置即可开启对QingStor对象存储的支持,以应对海量大规模数据的存储问题。
QingMR适用于流式数据处理、批量数据处理、极速数据查询与分析、机器学习等应用场景,能够满足企业用户实时数据计算、海量数据极速查询及分析处理的需求。QingMR提供Spark与MapReduce两种数据处理框架,并由YARN作为资源调度系统。用户可以轻松实现三种不同的计算模式,即Spark Standalone、Spark on YARN和MapReduce on YARN三者之间的切换。
青云QingCloud CTO甘泉表示,随着QingMR的全新升级,青云QingCloud大数据服务将承载更多需求和能力,满足用户不同场景的大数据需求。未来,QingMR将整合更多大数据组件,如Presto、Impala等,进一步完善QingCloud大数据服务,帮助用户挖掘数据价值、实现数据驱动增长。
好文章,需要你的鼓励
帕洛阿尔托创业公司Catio在VentureBeat Transform 2025大会上获得"最酷技术"奖。该公司成立于2023年,已筹集700万美元资金。Catio推出的AI技术架构副驾驶将架构重新定义为可编码、可内省和智能演进的活体系统。通过结合实时架构地图和多智能体AI组织,帮助工程团队从被动决策转向持续主动的架构优化,为CTO和架构师提供数据驱动的架构决策支持。
国立台湾大学等机构开发的MuseControlLite技术实现了音乐AI的重大突破。该系统仅用8500万参数就达到61.1%的旋律控制精度,比现有方法减少6.75倍参数量却性能更优。通过创新的位置编码和解耦交叉注意力机制,系统能同时处理文字、音乐属性和音频信号的多重控制,支持音乐生成、修复和风格迁移等功能,为音乐创作民主化开辟新道路。
谷歌在ISTE教育技术大会上发布超过30款AI教育工具,包括专为教育打造的Gemini应用、协作视频制作工具Google Vids扩展访问权限等。教师可利用AI技术进行头脑风暴、生成教案、个性化学习内容,还能创建定制版Gemini"助手"为学生提供额外支持。新工具还包括AI阅读伙伴、学习进度追踪、Chrome设备管理等功能,旨在通过"负责任的AI"推动个性化学习体验。
马里兰大学研究团队在70亿参数的OLMoE模型中首次发现了真实大型语言模型的"Grokking"现象,即AI在训练误差稳定后仍能实现智能突破。他们开发了基于混合专家模型思维路径分析的新方法,能够在无需外部测试的情况下准确预测AI的泛化能力,为AI开发和评估提供了革命性的实时监控工具。