英特尔今天宣布推出了至强D-2100的帷幕,一个专用于传统数据中心之外进行计算的新型芯片系列。
所谓的边缘计算能够让企业在更靠近数据生成的地方处理数据,以提高响应时间。例如,工厂操作员可能希望分析来自现场生产设备的传感器日志,以避免延迟将其发送到远程数据中心、然后等待结果返回。
唯一的挑战是,远程操作带来了一些传输上的限制,而D-2100解决了这个问题。它是一个集成的片上系统,可将多达18个处理核心和许多其他边缘设备必备的组件集成到一个紧凑型主板中。它的功耗更低,从60到110瓦不等,这主要取决于型号。
在该系统内部,处理核心是基于英特尔最新的Skylake SP 14纳米架构。相比英特尔此前边缘计算芯片来说的另一个重大改进是该模块整合了一个新的“网状互连”,借用自最新一代的数据中心处理器设计。
这个机制是系统的一部分,负责在多个核心之间传输数据。英特尔的网状体系结构以不同的行和列组成不同的芯片组件,使得信息流动比此前的几代更加流畅,从而加快处理时间。
D-2100的性能也得益于它采用了英特尔的QuickAssist技术。这是一个专门的组件,可以以高达每秒100Gb的速度对数据进行加密和解密,释放主要核心以执行其他任务。
英特尔表示,总体而言D-2100在处理通用计算任务时比上一代高出了60%。该芯片还提供了近3倍的网络和存储性能。这对于那些在网络边缘存储数据和分析数据的公司来说是速度的重大提升。
D-2100有14个型号,从4个到18个核心。英特尔认为硬件合作伙伴将这些芯片集成到数据存储设备、紧凑型服务器(特别是用于取代软件定义网络中的专有交换机)、甚至是互连汽车。
Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“我真的很喜欢Xeon D针对5G运营商边缘计算的设计。运营商需要在边缘的高密度计算解决方案,为5G计算功能提供低延迟。”
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。