人工智能 (AI) 正在以惊人的速度发展。企业不再仅仅是探索 AI,而是积极推动 AI 的规模化落地,从实验性应用转向实际部署。随着生成式模型日益精简和高效,AI 的重心正从云端转向边缘侧。如今,人们不再质疑边缘 AI 是否能实现规模化——它已然成为现实。
Arm 最新发布了《AI 效率热潮:更小的模型与加速的计算正驱动 AI 无处不在》报告,该报告深度解析了驱动这一转变的核心因素,以及其如何重塑半导体、AI 和终端设备生态系统。
更智能的模型正推动计算能力的爆发式增长
如果更小、更快的模型意味着更少的计算需求,为何超大规模云服务提供商仍在 AI 芯片上加大投入?答案就在于“杰文斯悖论”,意即更高的效率会带来更广泛的使用。该报告深入探讨了这一经济原理,并揭示了像 DeepSeek 这种超高效模型的突破,如何引发前所未有的基础设施投资热潮。
从 OpenAI 到 Meta,整个行业正全力扩大规模,从未有丝毫停歇,以跟上 AI 的爆发式增长,而这项增长已经渗透到从可穿戴设备到自动驾驶汽车的各个领域。
为何边缘设备正成为 AI 的新重心
AI 推理正越来越多地在设备端本地完成。原因显而易见:速度更快、隐私保护性更强、成本更低、能效更高。无论是离线翻译语言的智能手机,还是检测健康异常的智能手表,边缘设备正成为 AI 的强大引擎。
该报告指出,汽车、医疗、消费电子及制造等行业正积极拥抱这一变革,通过专用硬件(如基于 Arm Ethos-U NPU 的芯片)和高度优化的模型,将先进的 AI 功能直接带到设备端。
混合架构既是未来趋势,亦是当下主流
边缘 AI 的兴起并非预示着云端 AI 的消失,而是促使 AI 工作负载的分配更加智能化。未来的趋势是混合架构:云端专注于训练和协调任务,边缘端则承担实时推理职责。这需要一种新的计算架构——在通用 CPU 和专用 AI 加速器之间实现平衡。
报告中也详细阐述了 Arm 的策略:通过整合 CPU、GPU、AI 加速器以及 Arm KleidiAI 等软件,Arm 计算平台不仅实现了卓越的性能,还在各类型的端侧设备与边缘设备中提供了对开发者友好的可扩展性。
开发者生态是边缘 AI 时代的制胜关键
开发工具至关重要。开发者需要模型库、编译器和调优框架来支持快速试验。报告中提到的 Arm 开发者中心 就是一个典型范例,能为边缘 AI 社区提供了丰富的资源,助力开发者更快、更好、更高效地进行开发。
无论是优化成本、功耗还是延迟,AI 效率革新的浪潮已奔涌而至,正在重塑边缘计算的技术边界与应用潜能。
欲洞悉边缘 AI 全局脉络?请阅读完整报告。
补充信息:
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
哈佛、MIT联合研究揭示人类语言理解的神经机制,发现大脑通过"信息出口"将语言从核心系统传递至专业脑区实现深度理解。研究提出浅层与深层理解的区别,为人工智能发展提供重要启示,表明真正智能需要多系统协作而非单一优化。该发现可能改变我们对语言认知的理解。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
腾讯混元等团队开发出革命性的AI视频生成自我评判系统PAVRM和训练方法PRFL,让AI能在创作过程中实时评估和改进视频质量,无需等到完成才反馈。该技术使视频动态表现提升56%,人体结构准确性提升21.5%,训练效率提升1.4倍,为AI视频生成质量带来质的飞跃。