当高性能计算机(HPC)的计算能力从P级跃上E级、超级计算机的计算核心数目从几十万个扩展到几百万个,超大规模计算之下各计算单元如何保持高效互连与协同?在11月12日-17日于美国丹佛举行的世界超算大会(SC17)上,中科曙光面向全球首发的Torus硅元交换机给出了答案。
曙光公司HPC产品事业部总经理李斌和Intel OPA Marketing Director Joe Yaworski共同发布Torus硅元交换机
“目前大型超级计算机,特别是准E级或未来的E级系统,在系统规模、扩展性、成本、能耗、可靠性等方面仍面临着严峻挑战。本次发布的硅元交换机是全球首款采用Torus架构的高速网络交换机产品,基于它构建的超级计算机互连网络系统具有领先的性能、超强的扩展能力、极佳的容错能力,是迈向E级的最佳网络技术路线。”曙光公司HPC产品事业部总经理李斌介绍说。
与传统胖树网络拓扑结构相比,强调邻近互连的Torus直接网络在扩展性上具有明显的优势,且网络成本和系统规模呈线性关系。另外,因为具有很多冗余数据通路和采用动态路由,Torus网络也具有天然的容错性优势,这些都是超大规模系统所需要的网络特性,也是国际主流的高速网络技术发展方向。
李斌介绍说,曙光公司早在2015年的硅立方高性能计算机中就已实现了三维的3D-Torus。目前,曙光的Torus网络技术研究又有了突破性进展。Torus网络的维度从3D进化到了6D,提高Torus维度能有效降低大规模系统的最长网络跳数。在软件层面,支持6D-Torus的无死锁动态路由算法已经经过实际环境检验;在硬件层面,本次发布的Torus硅元交换机就是一项重要的硬件实现。
“硅元”是指Torus高维直接网络中的一个单元,一个硅元内部采用3D-Torus拓扑结构,多个硅元可以构建更高维的4D/5D/6D-Torus直接网络。将一个3D-Torus硅元集成到一台模块化交换机,能够极大提高系统集成度和密度,减少网络线缆,降低部署复杂度,降低成本。本次发布的Torus硅元交换机可以支持多达192个100Gb高速网络端口,Torus硅元交换机之间通过400Gb专用接口进行互连。
通过这样的硬件实现,也提高了Torus高速网络技术的覆盖范围,一些中小规模的高性能计算系统也可以更便捷地享用这项先进技术。
值得一提的是,本次发布的Torus硅元交换机还支持冷板式直接液体冷却,这标志着曙光的液体冷却技术从计算设备延展到了网络系统。液冷技术对提高大规模网络系统的集成度和可靠性、降低能耗等方面同样可以发挥重要的作用。
高性能计算和人工智能蓬勃发展的背后不仅需要计算能力的支撑和推动,也离不开高速互连网络的保驾护航。未来,曙光将在计算、存储、网络等核心技术方面进行持续创新,逐步发展成为中国新形象、新技术创新力量的名片之一。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。