ZD至顶网服务器频道 08月15日 新闻消息: Nvidia产品的收入全线上扬,Nvidia称公司上季度的收入创新高。
Nvidia的总部设在美国加州,专攻GPU, 2017年第2财季(截止今年7 月 31 日的三个月)的表现:
个人电脑和工作站图形芯片销售依然强劲。不过首席执行官黄仁勋(Jen-Hsun Huang)却大谈Nvidia在未来几个月从低谷走出来后新市场的增长会在收入里开始显现出来。特别是服务器和互联网连接设备上的机器学习应用程序对GPU加速有需求,而Nvidia则在大力推广可用于这些系统的工具包。
黄仁勋表示,"深度学习和人工智能涉及到各行各业,影响深远,我们十分期待这方面的发展。我们在过去5年里在发展旗下用于深度学习的整个 GPU 计算堆栈上做了重磅投资。"
他表示 ,"我们现在已经准备就绪,将与世界各地的研究人员和开发人员紧密合作,推广强大的深度学习和人工智能技术,为美好的未来创新。"
一众分析师和黄仁勋一样对于增长前景表示乐观,分析师特别看好数据中心和超级规模市场的增长前景,这些市场在加速人工智能和科学工作负载时用到 Nvidia GPU。
Gartner 研究副总裁Mark Hung告诉记者,"这些搞机器学习和超规模的人用的就是GPU。"他认为,Nvidia在这些市场的势头足可以叫板业界芯片巨头。
他表示,"Nvidia 采取的方法与其他ARM厂商不一样,取得了成功,Nvidia并不是正面叫板英特尔,而是真的打造出在可以有效地用于新机器学习算法里的GPU。
Nvidia 股价在盘后交易里涨到61.49美元, 上扬3%。
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。