ZD至顶网服务器频道 08月15日 新闻消息: Nvidia产品的收入全线上扬,Nvidia称公司上季度的收入创新高。
Nvidia的总部设在美国加州,专攻GPU, 2017年第2财季(截止今年7 月 31 日的三个月)的表现:
个人电脑和工作站图形芯片销售依然强劲。不过首席执行官黄仁勋(Jen-Hsun Huang)却大谈Nvidia在未来几个月从低谷走出来后新市场的增长会在收入里开始显现出来。特别是服务器和互联网连接设备上的机器学习应用程序对GPU加速有需求,而Nvidia则在大力推广可用于这些系统的工具包。
黄仁勋表示,"深度学习和人工智能涉及到各行各业,影响深远,我们十分期待这方面的发展。我们在过去5年里在发展旗下用于深度学习的整个 GPU 计算堆栈上做了重磅投资。"
他表示 ,"我们现在已经准备就绪,将与世界各地的研究人员和开发人员紧密合作,推广强大的深度学习和人工智能技术,为美好的未来创新。"
一众分析师和黄仁勋一样对于增长前景表示乐观,分析师特别看好数据中心和超级规模市场的增长前景,这些市场在加速人工智能和科学工作负载时用到 Nvidia GPU。
Gartner 研究副总裁Mark Hung告诉记者,"这些搞机器学习和超规模的人用的就是GPU。"他认为,Nvidia在这些市场的势头足可以叫板业界芯片巨头。
他表示,"Nvidia 采取的方法与其他ARM厂商不一样,取得了成功,Nvidia并不是正面叫板英特尔,而是真的打造出在可以有效地用于新机器学习算法里的GPU。
Nvidia 股价在盘后交易里涨到61.49美元, 上扬3%。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。