在前三篇文章中,已经完成了对K-DB所技术的完整概述,包括K-DB基本架构、锁技术的存储、构成、运行机制等,读者至此应该对K-DB锁相关技术已经有了完整的了解。锁技术的最终的目的是协调冲突资源的使用,本文将列举几个典型的锁技术的使用场景,帮助读者更好的理解K-DB的具体运行机制,最后本文也会用测试数据来证明K-DB锁的高效性和稳定性。
K-DB锁的典型使用场景
不同级别和条件,不同的insane,锁的申请和使用都有所区别,下面我们以一个3节点K-DB集群为例,来看具体的使用场景。
测试场景一:A节点需要改写一个数据块,且该节点之前并没有被访问过。该数据块的master节点是B,具体执行步骤
场景二:继续场景一,此时C节点也希望以X锁的方式访问该数据块。整个的处理流程如下:
场景三:继续场景一,此时节点C希望传送一个CR(一致性读)块。处理流程如下:
故障恢复场景:在上面的测试过程中,当某一个节点A发生故障后,数据库的恢复流程如下:
K-DB专为天梭K1优化
K-RAC方案累计应用实例超过160个,在实际应用中部署的最大规模的K-RAC集群是4个节点,浪潮在实验室中测试过20个节点的K-RAC方案,性能提升依然有着相当的线性度。
下图是K-RAC集群从单节点到4节点时,性能提升的线性水平。
用天梭K1 和K-DB搭建的数据库方案在优化前后,性能的对比十分明显。
K-RAC支持多节点并行恢复,故障恢复比其他产品更快。下图是K-DB故障恢复方案,该方案用Benchmark SQL软件模拟了1000个用户、100个warehouse、10G数据量的测试用例,K-DB以RAC双机运行,人为拔出心跳线模拟故障后,数据库经过不到5秒的短暂波动,就恢复了对外服务。
K-DB不仅具有K-RAC,而且也采用了多进程多线程、多版本并发控制等领先的技术,性能、可靠性等与Oracle基本相当,而且K-DB全面支持主流数据库标准,迁移方便。用户从Oracle迁移到K-DB,相关应用系统几乎不需要改动,迁移过程大部分自动化完成,应用门槛很低。有效降低了用户的迁移风险和成本。北京市档案局档案数据库管理系统有6GB数据量,从Oracle到K-DB的迁移仅用了15分钟。
K-DB具备高可用集群、异地容灾等高级功能,产品性能、可靠性与业界主流产品相当,可以广泛应用于大规模交易系统等企业关键业务场景。K-DB是专门为天梭K1定制和优化的数据库。目前,已在K1上验证了16000多个测试场景,包括自动化功能测试15000个,以及手动的功能或性能测试1000个。
同时浪潮为K-DB开发了完善的工具包,从异构数据库平台到K-DB的迁移工作,包括数据结构的比对、SQL语句检查等,都可以由工具软件自动完成,不仅有效降低了用户迁移的技术复杂度和工作量,也使得迁移风险更加可控。
目前,哈尔滨银行、内蒙古交通厅等用户已经完成了对该产品的测试,并即将在生产环境中采用。测试结果表明,K1+K-DB一体化解决方案经受住了用户复杂业务场景考验,可以承担更关键、规模更大的交易系统。
关键业务是浪潮的战略业务领域,从天梭K1关键应用主机到K-DB企业级数据库,围绕关键业务计算,浪潮提供给中国企业级用户多一种选择。K-DB凭借一键迁移、高可靠和高性能的产品特征,满足了用户对异构平台平滑安全迁移的现实需求,解决了制约中国企业信息化自主可控面临的重大现实问题。
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。