集群功能是数据库产品高可用性的重要一环,集群架构是保障业务连续性的核心架构,体现着数据产品的高可用性和技术水准。但在业界集群架构有多种方案和技术,其中最具稳定性、最能够保障业务连续性的架构当属于RAC集群,即Real Application Cluster。RAC集群特点是多个数据库节点共享存储,节点多活,可同时处理业务请求,具有负载均衡和故障转移两大特性,以此为系统提供业务连续性和高性能保障,经过多年电信、金融等关键行业的核心业务检验,RAC集群技术已经成为业界数据库集群的首选方案。
目前,甲骨文的Oracle数据库和浪潮的K-DB数据库是仅有的两个支持RAC集群架构的数据库产品。 RAC需要支持多个节点的并行读写操作,节点之间协同工作的复杂度远超出其他集群方案,这也是RAC集群技术难以突破的重要原因。其中,RAC集群技术的重中之重是锁机制的管理,也是实现RAC架构的核心技术。
K-DB数据库突破了锁机制管理的技术难点,实现了真正的RAC集群。
锁与数据库的基本架构等紧密结合,涉及到内存管理、请求调度等其他相关技术。所以,从今天起,我们将发布系列的文章,介绍K-DB演进、K-DB基本架构、锁机制的构成、及锁的运行和测试数据等各个方面,让您对浪潮锁机制管理有全面的了解。
锁技术是伴随着K-DB数据库的发展而不断进化的,在谈锁技术之前,先简单回顾一下K-DB的历史。
K-DB第一代产品可以满足用户的基本需求,具备行级锁、MVCC基于在线重做日志及增量日志的备份与恢复等功能,但不足也十分明显——解决不了扩展和单点故障两大问题。
第二代产品基于日志同步的 Active-Standby容灾架构,将在主库中的操作产生的redo日志,传送到备库中。备库以read only 方式打开,供用户做查询服务,帮助主库降低一定的负载。当主库发生故障时,备库以normal方式打开,给用户进行正常的读写服务,主库和备库的切换时间不长,数据库经过短暂的停顿后,就可以继续对外服务,满足了灾备需求。
现在的K-DB是第三代产品,实现了RAC技术,具备负载均衡能力,解决了扩展性和单点故障问题。从此,浪潮K-DB具备了RAC架构,可实现真正的共享存储、多活节点的集群方案。浪潮将该技术称为“K-RAC”。
从单机架构到Active-Standby架构,从Active-Standby架构到RAC架构,RAC架构为技术实现提出了挑战,多个节点共享同一存储设备,为保障数据一致性,避免节点之间争抢数据的情况发生,锁机制管理技术使这一技术难题得以完美解决。
K-DB架构演变图
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。