德国当地时间6月20日,与英特尔宣布第二代至强Phi芯片“Knights Landing”(以下称KNL)正式上市同步,浪潮在刚刚举行的第31届国际超算大会(ISC2016)上,全球首发基于最新KNL平台的深度学习计算框架Caffe-MPI,这标志着浪潮称为全球第一个在英特尔最新的KNL平台上完成Caffe并行开发的公司。
浪潮集团副总裁胡雷钧表示,此次KNL平台Caffe-MPI的发布,一方面显示出浪潮与英特尔紧密的合作关系,另一方面也将为全球深度学习用户带来新的协处理加速解决方案,让他们可以选择最贴合自身实际应用的异构加速技术。目前,浪潮推动的开源Caffe-MPI已受到中国、印度、美国等众多公司和研究机构的关注。
浪潮Caffe-MPI是全球首款高性能MPI集群版的Caffe深度学习计算框架,其采用成熟的MPI技术对Caffe予以数据并行的优化,其目标是解决深度学习计算模型训练的效率问题。Caffe是目前最快的深度卷积神经网络(Deep Convolutional Neural Networks,CNN)架构,它最早由UC伯克利实验室完成单机单卡的开发,针对CNN训练所设计。然而随着训练模型越来越复杂、训练数据越发庞大,单机单卡已经不能满足用户的实际需求。
为此,浪潮在伯克利caffe架构的基础上,针对HPC系统架构技术设计,率先完成了多机多卡的并行化开发,并完全保留了原始caffe架构的特性。浪潮Caffe-MPI硬件系统采用Lustre存储+IB网络+HPC集群,基于Lustre并行存储采用多进程+多线程机制并行读取训练数据,实现较高的IO吞吐;采用IB网络实现高速互联网,实现参数的快速传输和模型更新;采用数据并行机制,利用HPC集群实现大规模训练。同时,浪潮Caffe-MPI可以采用多机多卡同时训练,并可以部署到大规模训练平台上,实现对大规模数据样本的训练。
新一代Xeon Phi处理器Knights Landing既可以做协处理器,也可以单独做中央主处理器,处理器核心数量超过72个,并支持四线程,最多拥有288个线程,双精度浮点性能超过3TFlops,单精度则超过6TFlops,被业界视为在高性能计算和深度学习领域革命性的产品。随着此次浪潮率先发布基于KNL平台的Caffe-MPI,相信会有更多的用户感受到新技术在深度学习效率上带来的诸多提升。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。