日前,中国人民银行征信中心天津研发测试中心采用近百台浪潮高端双路服务器NF5280M4搭建其大数据研发平台,用来开发符合其业务需求的数据库、统计平台和评分模型等相关软件。
数据多并不是大数据,能够利用IT先进技术将碎片化的信息整合起来才能形成真正有用的大数据,征信的基本过程就是将分散的、看似用处不大的局部信息整合成可以完整描述消费者信用状况的全局信息。
未来征信行业的核心竞争力就在于其数据挖掘能力和模型开发能力,为此,中国人民银行征信中心决心搭建专门的大数据研发平台,开发出适合自己的信用评估模型、更多样的数据库类型和业务平台,从而在海量数据中挖掘出更多不易被发现的信用信息。大数据研发平台需要对新开发的平台和模型进行成百上千次的模拟、测试,进而不断细化和更新,这就需要支撑平台的服务器具备高可靠性,保障平台持续稳定运行。
中国人民银行征信中心专门负责企业和个人征信系统(即金融信用信息基础数据库)的建设、运行和维护。如今,其征信系统已成为世界规模最大、收录人数最多、收集信贷信息最全、覆盖范围和使用最广的信用信息基础数据库。
经过反复考察,中国人民银行征信中心最终选择了浪潮高端双路服务器NF5280M4。NF5280M4采用系统环境动态感知和动态功率调节技术,配合先进的风冷系统实现最佳工作环境,可以保障系统稳定运行;除了电源、风扇、硬盘冗余热插拔外,可实现关键部件故障自动检测和修正,故障部件自动隔离等高级RAS特性。
大数据时代,没有现成的免费午餐,数据和模型都需要提炼,拿来主义是行不通的。目前我们已经积累了海量数据,依托浪潮服务器搭建的大数据开发平台,稳定可靠,能够帮助我们开发出更多的数据分析平台和信用评估模型,更好地利用大数据做好信贷审批和风险管理。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。