日前,中国人民银行征信中心天津研发测试中心采用近百台浪潮高端双路服务器NF5280M4搭建其大数据研发平台,用来开发符合其业务需求的数据库、统计平台和评分模型等相关软件。
数据多并不是大数据,能够利用IT先进技术将碎片化的信息整合起来才能形成真正有用的大数据,征信的基本过程就是将分散的、看似用处不大的局部信息整合成可以完整描述消费者信用状况的全局信息。
未来征信行业的核心竞争力就在于其数据挖掘能力和模型开发能力,为此,中国人民银行征信中心决心搭建专门的大数据研发平台,开发出适合自己的信用评估模型、更多样的数据库类型和业务平台,从而在海量数据中挖掘出更多不易被发现的信用信息。大数据研发平台需要对新开发的平台和模型进行成百上千次的模拟、测试,进而不断细化和更新,这就需要支撑平台的服务器具备高可靠性,保障平台持续稳定运行。
中国人民银行征信中心专门负责企业和个人征信系统(即金融信用信息基础数据库)的建设、运行和维护。如今,其征信系统已成为世界规模最大、收录人数最多、收集信贷信息最全、覆盖范围和使用最广的信用信息基础数据库。
经过反复考察,中国人民银行征信中心最终选择了浪潮高端双路服务器NF5280M4。NF5280M4采用系统环境动态感知和动态功率调节技术,配合先进的风冷系统实现最佳工作环境,可以保障系统稳定运行;除了电源、风扇、硬盘冗余热插拔外,可实现关键部件故障自动检测和修正,故障部件自动隔离等高级RAS特性。
大数据时代,没有现成的免费午餐,数据和模型都需要提炼,拿来主义是行不通的。目前我们已经积累了海量数据,依托浪潮服务器搭建的大数据开发平台,稳定可靠,能够帮助我们开发出更多的数据分析平台和信用评估模型,更好地利用大数据做好信贷审批和风险管理。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。