日前,中国人民银行征信中心天津研发测试中心采用近百台浪潮高端双路服务器NF5280M4搭建其大数据研发平台,用来开发符合其业务需求的数据库、统计平台和评分模型等相关软件。
数据多并不是大数据,能够利用IT先进技术将碎片化的信息整合起来才能形成真正有用的大数据,征信的基本过程就是将分散的、看似用处不大的局部信息整合成可以完整描述消费者信用状况的全局信息。
未来征信行业的核心竞争力就在于其数据挖掘能力和模型开发能力,为此,中国人民银行征信中心决心搭建专门的大数据研发平台,开发出适合自己的信用评估模型、更多样的数据库类型和业务平台,从而在海量数据中挖掘出更多不易被发现的信用信息。大数据研发平台需要对新开发的平台和模型进行成百上千次的模拟、测试,进而不断细化和更新,这就需要支撑平台的服务器具备高可靠性,保障平台持续稳定运行。
中国人民银行征信中心专门负责企业和个人征信系统(即金融信用信息基础数据库)的建设、运行和维护。如今,其征信系统已成为世界规模最大、收录人数最多、收集信贷信息最全、覆盖范围和使用最广的信用信息基础数据库。
经过反复考察,中国人民银行征信中心最终选择了浪潮高端双路服务器NF5280M4。NF5280M4采用系统环境动态感知和动态功率调节技术,配合先进的风冷系统实现最佳工作环境,可以保障系统稳定运行;除了电源、风扇、硬盘冗余热插拔外,可实现关键部件故障自动检测和修正,故障部件自动隔离等高级RAS特性。
大数据时代,没有现成的免费午餐,数据和模型都需要提炼,拿来主义是行不通的。目前我们已经积累了海量数据,依托浪潮服务器搭建的大数据开发平台,稳定可靠,能够帮助我们开发出更多的数据分析平台和信用评估模型,更好地利用大数据做好信贷审批和风险管理。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。