日前,中国人民银行征信中心天津研发测试中心采用近百台浪潮高端双路服务器NF5280M4搭建其大数据研发平台,用来开发符合其业务需求的数据库、统计平台和评分模型等相关软件。
数据多并不是大数据,能够利用IT先进技术将碎片化的信息整合起来才能形成真正有用的大数据,征信的基本过程就是将分散的、看似用处不大的局部信息整合成可以完整描述消费者信用状况的全局信息。
未来征信行业的核心竞争力就在于其数据挖掘能力和模型开发能力,为此,中国人民银行征信中心决心搭建专门的大数据研发平台,开发出适合自己的信用评估模型、更多样的数据库类型和业务平台,从而在海量数据中挖掘出更多不易被发现的信用信息。大数据研发平台需要对新开发的平台和模型进行成百上千次的模拟、测试,进而不断细化和更新,这就需要支撑平台的服务器具备高可靠性,保障平台持续稳定运行。
中国人民银行征信中心专门负责企业和个人征信系统(即金融信用信息基础数据库)的建设、运行和维护。如今,其征信系统已成为世界规模最大、收录人数最多、收集信贷信息最全、覆盖范围和使用最广的信用信息基础数据库。
经过反复考察,中国人民银行征信中心最终选择了浪潮高端双路服务器NF5280M4。NF5280M4采用系统环境动态感知和动态功率调节技术,配合先进的风冷系统实现最佳工作环境,可以保障系统稳定运行;除了电源、风扇、硬盘冗余热插拔外,可实现关键部件故障自动检测和修正,故障部件自动隔离等高级RAS特性。
大数据时代,没有现成的免费午餐,数据和模型都需要提炼,拿来主义是行不通的。目前我们已经积累了海量数据,依托浪潮服务器搭建的大数据开发平台,稳定可靠,能够帮助我们开发出更多的数据分析平台和信用评估模型,更好地利用大数据做好信贷审批和风险管理。
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
查尔斯大学和意大利布鲁诺·凯斯勒基金会的研究团队首次系统性解决了同声传译AI系统延迟评估的准确性问题。他们发现现有评估方法存在严重偏差,常给出相互矛盾的结果,并提出了YAAL新指标和SOFTSEGMENTER对齐工具。YAAL准确性达96%,比传统方法提升20多个百分点。研究还开发了专门的长音频评估工具LongYAAL,为AI翻译技术发展提供了可靠的测量标准。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
印度理工学院团队构建了史上最大规模印度文化AI测试基准DRISHTIKON,包含64288道多语言多模态题目,覆盖15种语言和36个地区。研究评估了13个主流AI模型的文化理解能力,发现即使最先进的AI也存在显著文化盲区,特别是在低资源语言和复杂推理任务上表现不佳,为构建文化感知AI提供了重要指导。