人工智能 (AI) 正在以惊人的速度发展。企业不再仅仅是探索 AI,而是积极推动 AI 的规模化落地,从实验性应用转向实际部署。随着生成式模型日益精简和高效,AI 的重心正从云端转向边缘侧。如今,人们不再质疑边缘 AI 是否能实现规模化——它已然成为现实。
Arm 最新发布了《AI 效率热潮:更小的模型与加速的计算正驱动 AI 无处不在》报告,该报告深度解析了驱动这一转变的核心因素,以及其如何重塑半导体、AI 和终端设备生态系统。
更智能的模型正推动计算能力的爆发式增长
如果更小、更快的模型意味着更少的计算需求,为何超大规模云服务提供商仍在 AI 芯片上加大投入?答案就在于“杰文斯悖论”,意即更高的效率会带来更广泛的使用。该报告深入探讨了这一经济原理,并揭示了像 DeepSeek 这种超高效模型的突破,如何引发前所未有的基础设施投资热潮。
从 OpenAI 到 Meta,整个行业正全力扩大规模,从未有丝毫停歇,以跟上 AI 的爆发式增长,而这项增长已经渗透到从可穿戴设备到自动驾驶汽车的各个领域。
为何边缘设备正成为 AI 的新重心
AI 推理正越来越多地在设备端本地完成。原因显而易见:速度更快、隐私保护性更强、成本更低、能效更高。无论是离线翻译语言的智能手机,还是检测健康异常的智能手表,边缘设备正成为 AI 的强大引擎。
该报告指出,汽车、医疗、消费电子及制造等行业正积极拥抱这一变革,通过专用硬件(如基于 Arm Ethos-U NPU 的芯片)和高度优化的模型,将先进的 AI 功能直接带到设备端。
混合架构既是未来趋势,亦是当下主流
边缘 AI 的兴起并非预示着云端 AI 的消失,而是促使 AI 工作负载的分配更加智能化。未来的趋势是混合架构:云端专注于训练和协调任务,边缘端则承担实时推理职责。这需要一种新的计算架构——在通用 CPU 和专用 AI 加速器之间实现平衡。
报告中也详细阐述了 Arm 的策略:通过整合 CPU、GPU、AI 加速器以及 Arm KleidiAI 等软件,Arm 计算平台不仅实现了卓越的性能,还在各类型的端侧设备与边缘设备中提供了对开发者友好的可扩展性。
开发者生态是边缘 AI 时代的制胜关键
开发工具至关重要。开发者需要模型库、编译器和调优框架来支持快速试验。报告中提到的 Arm 开发者中心 就是一个典型范例,能为边缘 AI 社区提供了丰富的资源,助力开发者更快、更好、更高效地进行开发。
无论是优化成本、功耗还是延迟,AI 效率革新的浪潮已奔涌而至,正在重塑边缘计算的技术边界与应用潜能。
欲洞悉边缘 AI 全局脉络?请阅读完整报告。
补充信息:
好文章,需要你的鼓励
NVIDIA团队开发的SANA-Sprint技术实现了AI图像生成的重大突破,将传统需要20步的生成过程压缩至1步,在H100上仅需0.1秒即可生成1024×1024高清图像,速度比现有最快模型提升10倍以上。该技术通过创新的混合蒸馏策略,在大幅提升速度的同时保持了图像质量,并支持实时交互应用,为AI绘画从专业工具向大众应用的转变奠定了基础。
初创公司Positron获得5160万美元A轮融资,推出专门针对AI推理的Atlas芯片。该公司声称其芯片在性能功耗比和成本效益方面比英伟达H100高出2-5倍,并已获得Cloudflare等企业客户采用。Positron专注于内存优化设计,无需液体冷却,可直接部署在现有数据中心。公司计划2026年推出支持16万亿参数模型的下一代Titan平台。
北京人工智能研究院团队开发的DiagNote模型通过模仿人类做笔记的习惯,解决了AI在多轮视觉对话中容易"失忆"的问题。该研究构建了专门的MMDiag数据集,设计了双模块协作的AI架构,让机器学会像人类一样通过标记重点区域来保持专注力,为更自然的人机视觉交流奠定了基础。