前面两篇文章,已经将Triton的“无状态模型”、“有状态模型”与标准调度器的动态批量处理器与序列批量处理器的使用方式,做了较完整的说明。
大部分的实际应用都不是单纯的推理模型就能完成服务的需求,需要形成前后关系的工作流水线。例如一个二维码扫描的应用,除了需要第一关的二维码识别模型之外,后面可能还得将识别出来的字符传递给语句识别的推理模型、关键字搜索引擎等功能,最后找到用户所需要的信息,反馈给提出需求的用户端。
本文的内容要说明Triton服务器形成工作流水线的“集成推理”功能,里面包括“集成模型(ensemble model)”与“集成调度器(ensemble scheduler)”两个部分。下面是个简单的推理流水线示意图,目的是对请求的输入图像最终反馈“图像分类”与“语义分割”两个推理结果:
当接收到集成模型的推断请求时,集成调度器将:
整个流水线使用3个模型,并进行以下三个处理步骤:
在执行过程中,推理服务器必须支持以下的功能,才能将多种推理模型集成一个或多个工作流水线,去执行完整的工作流程:
为了实现的推理流水线功能,Triton服务器使用集成模型与集成调度器的配合,来完成这类工作流水线的搭建管理。接着就执行以下步骤来创建一个流水线所需要的配套内容:
无论工作流水线中调用多少个模型,Triton服务器都将这样的组合视为一个模型,与其他模型配置一样,需要定义输入与输出节点的张量类型与尺度。
以上面实示例图中的要求,这个集成模型有一个名为“IMAGE”的输入节,与两个名为“CLASSIFICATION”与“SEGMENTATION”的输出节点,至于数据类型与张量维度内容,就得根据实际使用的模型去匹配。这部分配置的参考内容如下:
name: "ensemble_model" platform: "ensemble" max_batch_size: 1 input [ { name: "IMAGE" data_type: TYPE_STRING dims: [ 1 ] } ] output [ { name: "CLASSIFICATION" data_type: TYPE_FP32 dims: [ 1000 ] }, { name: "SEGMENTATION" data_type: TYPE_FP32 dims: [ 3, 224, 224 ] } ] |
从这个内容中可以看出,Triton服务器将这个集成模型视为一个独立模型。
这部分使用“ensemble_scheduling”来调动集成调度器,将使用到模型与数据形成完整的交互关系。
在上面示例图中,灰色区块所形成的工作流水线中,使用到image_prepoecess_model、classification_model、segmentation_model三个模型,以及preprocessed_image数据在模型中进行传递。
下面提供这部分的范例配置内容,一开始使用“ensemble_scheduling”来调用集成调度器,里面再用“step”来定义模组之间的执行关系,透过模型的“input_map”与“output_map”的“key:value”对的方式,串联起模型之间的交互动作:
ensemble_scheduling { step [ { model_name: "image_preprocess_model" model_version: -1 input_map { key: "RAW_IMAGE" value: "IMAGE" } output_map { key: "PREPROCESSED_OUTPUT" value: "preprocessed_image" } }, { model_name: "classification_model" model_version: -1 input_map { key: "FORMATTED_IMAGE" value: "preprocessed_image" } output_map { key: "CLASSIFICATION_OUTPUT" value: "CLASSIFICATION" } }, { model_name: "segmentation_model" model_version: -1 input_map { key: "FORMATTED_IMAGE" value: "preprocessed_image" } output_map { key: "SEGMENTATION_OUTPUT" value: "SEGMENTATION" } } ] } |
这里简单说明一下工作流程:
完成以上的步骤,就能用集成模型与集成调度器的搭配,来创建一个完整的推理工作流任务,相当简单。
不过这类集成模型中,还有以下几个需要注意的重点:
总的来说,Triton服务器提供的集成功能还是相对容易理解与操作的,只要大家留意模型之间所传递的数据张量格式与尺度,就能轻松搭建起这样的推理工作流,去面对实际环境中更多变的使用需求。【完】
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。