加州大学旧金山分校(UCSF)、辛辛那提儿童医院和初创企业 Qure.ai等医学影像领域的领先企业和机构借助 MONAI Deploy,将研究突破应用于临床。
为大规模地提供 AI 加速的医疗服务,医疗机构需要让成千上万的神经网络一同工作,以应对人体生理学、所有疾病,甚至医院运营等方方面面的相关工作,而这在如今的智能医院环境中是一项重大的挑战。
MONAI 是一个采用 NVIDIA 技术加速的开源医学影像 AI 框架,其下载量目前已超 65 万次。借助 MONAI 应用包(MAP),MONAI 就能更轻松地将模型集成到临床工作流中。
MAP通过 MONAI Deploy 提供,其作为一种 AI 模型的打包方式,能够更轻松地在现有医疗生态系统中进行部署。
辛辛那提儿童医院的 Ryan Moore 博士表示:“如果想要在影像部门部署几个 AI 模型来帮助专家识别十几种不同的病症或实现医学影像报告的半自动化创建,需要耗费大量时间和资源来为每个模型寻求合适的硬件和软件基础设施。这在过去虽然‘可能’,但并不 ‘可行’。”
MAP 能够简化这一流程。如果开发者使用 MONAI Deploy 应用软件开发工具包来打包一个应用,医院就可以轻松地在本地或云端运行这一应用。MAP 规格还整合了医疗 IT 标准,比如医学影像互操作性标准 DICOM 等。
伦敦医学影像与 AI 中心 Value-Based Healthcare 项目首席技术官 Jorge Cardoso 表示:“目前,大多数 AI 模型一直处于研发阶段,很少能够真正用于患者护理。MONAI Deploy 将有助于推动研发成果落地,实现更具影响力的临床 AI。”
MONAI Deploy 得到医院和医疗初创企业的采用
世界各地的医疗机构、学术医疗中心和 AI 软件开发商正在采用 MONAI Deploy,包括:
将医学影像 AI 部署到 MAP
MAP规格由 MONAI Deploy 工作组制定。该工作组由来自十几家医学影像机构的专家组成,目标是支持 AI 应用开发者以及运行 AI 应用的临床和基础设施平台。
对于开发者来说,MAP 可以帮助研究者在临床环境中轻松打包和测试模型,从而加速 AI 模型的演进。这使他们能够采集真实世界的反馈,进而对 AI 进行完善和改进。
对于云服务商来说,对(使用云原生技术设计的) MAP 的支持能够助力采用 MONAI Deploy 的研究者和企业通过容器或原生应用集成,在自己的平台上运行 AI 应用。整合 MONAI Deploy 和 MAP 的云平台包括:
着手使用MONAI。关注本周的RSNA大会,了解NVIDIA如何助力构建AI医学影像生态系统。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。