为了使生成式人工智能的跨语言数据检索更加准确,NVIDIA通过面向开发人员的应用编程接口目录,推出了使用Nvidia NeMo Retriever的多语言功能。该软件可以理解多种语言和格式的数据,并将其转化为文本,帮助实现上下文感知结果。
NeMo Retriever允许开发人员为人工智能模型建立信息摄取和检索管道,通过转换文本、文档、表格和类似信息来提取结构化和非结构化数据,并避免重复的数据块。它将信息转换成人工智能可以理解的语言,并将其插入到使用嵌入技术的矢量数据库中。
嵌入是一种复杂的信息数学表示方法,代表了词、短语和其他类型数据之间的属性和关系。在搜索或思考两个词或句子时,它可以帮助捕捉两者意义的“接近程度”,就像“猫”和“狗”很接近,因为它们都是动物,并且都是家养宠物。然而,“烤面包机”和“狗”的区别比较大,不过两者都经常出现在房子里。
NVIDIA生成式人工智能软件副总裁Kari Briski在接受SiliconANGLE采访时表示,使用 Retriever以母语嵌入和检索数据还能提高准确性。这种情况的部分原因是英语在大多数人工智能数据训练集中占主导地位。任何人如果将某些德语的内容翻译成英语,然后再翻译回德语,都会发现“翻译遗失”效应,即每次都会遗失上下文或准确性。
Briski表示:“准确性是必要的,而世界上大多数数据、开放数据恰好都是英语,这就是为什么要推动主权人工智能的原因。”“加强其他语言,让数据和检索器使用他们的自然语言,将有助于提高准确性。”
Briski表示,Retriever刚发布时,由于使用翻译软件会失去准确性,因此客户要求提供多语言支持。企业业务并非只使用一种语言。他们可能会嵌入英文文档、德文测试、日文内容,或者调入用俄文撰写的研究报告。结果是,这些信息需要通过相同的模型进行搜索,但通过的工具越多,准确性就越低。
除了摄取之外,NeMo Retriever还能对结果进行“评估和重排”,以确保答案的准确性。当通过Retriever发送查询时,它会检查矢量数据库的响应,并对检索到的信息进行排序,以便根据与查询的相关性对答案进行排序,从而提高准确性。
NVIDIA与DataStax合作,采用NeMo Retriever对免费在线志愿者众包的维基百科的内容进行矢量嵌入。利用NVIDIA提供的技术和专用软件,该公司能够在三天内将1千万个数据条目的内容矢量化为人工智能可以使用的格式,这项工作原本通常需要30 天。
其他一些NVIDIA的合作伙伴——包括Cohesity、Cloudera、SAP SE和VAST Data等已经在整合对这些新的微服务的支持,以支持大型多语言数据源。其中包括检索增强生成技术等服务,这些技术允许预训练的生成式人工智能使用实时数据源获取更丰富、更相关的信息。适应多语言源的企业可以获取更多数据。
Briski表示,目前,NeMo Retriever for Multilingual只能用于文本检索和回答。她表示:“面向未来,我们正在研究多模态数据、图像、PDF和视频。”“我们现在只讨论文本。因为如果你能处理好文本,那么你就能在其他模式方面做得很好。”
好文章,需要你的鼓励
丰田第六代RAV4搭载高通骁龙数字底盘平台,提供个性化、直观且无缝连接的驾驶体验。新车基于丰田Arene软件开发平台,推进软件定义汽车发展,配备紧急驾驶停止系统和突然加速抑制功能。车载多媒体系统支持个性化主屏幕定制和更准确的语音识别。通过与高通技术公司合作,利用先进AI技术增强用户体验,提供更智能、直观和安全的出行方案。
上海AI实验室开发RePro训练方法,通过将AI推理过程类比为优化问题,教会AI避免过度思考。该方法通过评估推理步骤的进步幅度和稳定性,显著提升了模型在数学、科学和编程任务上的表现,准确率提升5-6个百分点,同时大幅减少无效推理,为高效AI系统发展提供新思路。
Chainguard发布可信开源软件季度报告,基于1800多个容器镜像项目和近5亿次构建的数据分析。报告显示:Python因AI需求成为最受欢迎的开源镜像;超半数生产环境运行在热门项目之外的长尾镜像上;98%的漏洞出现在非热门项目中,安全负担主要集中在不太显眼的技术栈部分;44%客户在生产环境中使用FIPS镜像以满足合规要求;Chainguard平均在20小时内修复关键漏洞。
MIT团队开发的VLASH技术首次解决了机器人动作断续、反应迟缓的根本问题。通过"未来状态感知"让机器人边执行边思考,实现了最高2.03倍的速度提升和17.4倍的反应延迟改善,成功展示了机器人打乒乓球等高难度任务,为机器人在动态环境中的应用开辟了新可能性。