源讯、戴尔科技,技嘉科技、慧与、浪潮、联想和超微成为首批将基于NVIDIA Grace的HGX系统用于HPC和AI的制造商
NVIDIA于今日宣布,多家全球领先的计算机制造商正在采用全新NVIDIA Grace™超级芯片打造新一代服务器,为超大规模时代的AI和HPC工作负载提速。
源讯、戴尔科技,技嘉科技、慧与、浪潮、联想和超微计划部署基于NVIDIA Grace CPU 超级芯片和NVIDIA Grace Hopper™超级芯片的服务器。
所有这些新系统都得益于刚刚发布的NVIDIA HGXTM平台中的Grace和Grace Hopper设计。制造商根据这些设计所提供的蓝图,能够构建出可以提供最高性能,并且内存带宽和能效两倍于当今领先的数据中心CPU的系统。
NVIDIA超大规模和HPC副总裁Ian Buck表示:“超级计算已进入到超大规模AI时代。NVIDIA正与OEM合作伙伴一道助力研究者攻克此前无法解决的巨大挑战。从气候科学、能源研究、太空探索、数字生物学到量子计算等领域,NVIDIA Grace CPU超级芯片和Grace Hopper超级芯片为全球最先进的HPC和AI平台奠定了基础。”
早期采用者引领创新
美国和欧洲的领先超级计算中心都将率先采用这两款超级芯片。
洛斯阿拉莫斯国家实验室(LANL)于今日宣布,其新一代系统Venado将成为美国首个采用NVIDIA Grace CPU技术的系统。Venado是使用HPE Cray EX超级计算机构建而成的异构系统,同时将配备Grace CPU超级芯片节点和Grace Hopper超级芯片节点,满足各类新兴应用需求。该系统建成后的AI性能预计将超过10 exaflops。
LANL模拟和计算副总监Irene Qualters表示:“借助NVIDIA Grade Hopper强大性能的支撑,Venado将帮助LANL研究人员继续履行自身的承诺,即在科学领域取得新突破。NVIDIA的加速计算平台和广阔的生态系统能够解决性能瓶颈,助力LANL开展有望造福整个国家和社会的新研究。”
瑞士国家计算中心的新系统Alps同样由慧与基于HPE Cray EX超级计算机而构建。该系统将使用Grace CPU超级芯片,以支持众多领域的开创性研究。Alps将作为一个通用系统,向瑞士及其他国家的研究者开放。
NVIDIA Grace为计算密集型工作负载提速
NVIDIA Grace CPU超级芯片搭载两个基于Arm®的CPU,它们通过高带宽、低延迟、低功耗的NVIDIA NVLink®-C2C互连技术连接。这项开创性的设计内置多达144个高性能Arm Neoverse核心,并且带有可伸缩矢量扩展和1 TB/s的内存子系统。
Grace CPU超级芯片支持最新的PCIe Gen5协议,可实现与GPU之间最高性能连接,同时还能连接NVIDIA ConnectX®-7智能网卡以及NVIDIA BlueField®-3 DPU以保障HPC及AI工作负载安全。
Grace Hopper超级芯片在一个集成模块中通过NVLink-C2C连接NVIDIA Hopper GPU与NVIDIA Grace CPU,满足HPC和超大规模AI应用需求。
基于NVIDIA Grace的系统将运行NVIDIA AI和NVIDIA HPC软件产品组合,实现全栈式集成计算。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。