英伟达按宣布,将对Nvidia AI和Nvidia AI Enterprise平台进行重大升级,新功能旨在推进语音、推荐系统、超大规模推理等工作负载。

英伟达在今天举行的Nvidia GTC 2022上公布了这一消息,与此同时还推出了新的AI Accelerated加速计划,旨在保障使用该平台构建AI应用的性能和可靠性。
这款AI平台是一套工具,其中包括了软件开发套件和AI框架,让开发人员可以使用这些工具跨多个节点进行AI设计、部署、管理和扩展,以支持复杂的训练、推理和机器学习工作负载。
该平台的一个关键组件是Nvidia Triton,一个开源的超大规模模型推理解决方案,现在包括了一个模型导航器,可帮助加速优化AI模型的部署,以及一个用于在Kubernetes中有效扩展的管理服务,以及一个Forest Inference Library用于实现推理树模型。
另一个关键组件Nvidia Riva 2.0已经进行了更新。英伟达表示,Riva是一个语音AI SDK,其中包括了各种具有高识别率的预训练模型,准确性是通用语音识别服务的2倍。最新版本提供了对7种语言的语音识别功能,针对男性和女性声音的、基于深度学习的文本到语音转换功能,以及使用Nvidia TAO工具包进行自定义调整的功能。
该平台还配备了最新版本的Nvidia NeMo Megatron 0.9,一个用于训练大型语言模型的框架,以及Nvidia Merlin 1.0,一个全新的组件,英伟达称之为“端到端推荐框架”,用于构建高性能推荐系统。最后,Nvidia AI现在还配备了Nvidia Maxine,一种音频和视频质量增强软件开发套件,可实现与AI的实时通信。
英伟达表示,Nvidia AI平台从今天开始可供使用,目前多家知名客户正在使用该平台,其中包括Snap。
Snap对话式AI负责人Alan Bekker表示:“在Snapchat上,我们的社区每天使用Lenses的次数超过60亿次。Snap正在使用Nvidia Riva优化我们基于AI的语音功能,并将其提供给Lens Studio创作者,以打造新一代引人入胜的AR体验。”
Nvidia AI Enterprise(即Nvidia AI平台的企业级版本)方面,英伟达表示,现在该版本已经针对所有主流数据中心和云基础设施平台进行了优化、认证和支持。Red Hat OpenShift和VMware vSphere with Tanzu现在支持最新版本的Nvidia Enterprise 2.0。
此外,Nvidia AI Enterprise 2.0增加了对更多AI软件容器的支持,以增强训练和推理能力,例如支持Nvidia TAO Toolkit,让开发人员能够微调预训练的AI模型,更轻松地对其进行定制,即使是在他们缺乏AI或训练数据方面专业知识的情况下。
英伟达表示,最新版本的Nvidia AI Enterprise已经被日本电报电话公司的子公司NTT Communications采用,用于加速自然语言处理和智能视频分析应用的研发,已经取得了良好的效果。
NTT Communication创新中心技术部门总监Shoichiro Henmi表示:“我们有很多应用开发人员现在都在使用加速计算,并且需要一个内部基础设施来提供易于使用的、经济高效的、支持GPU的环境。我们相信Nvidia AI Enterprise将提供一个理想的解决方案,作为支持AI的平台支持我们的VMware vSphere、Kubernetes和云基础架构的大规模开发。”
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。