前面已经介绍过关于DeepStream各种输入源的使用方式,而且Jetson Nano 2GB上开启4路输入(两个摄像头+两个视频文件),都能得到25FPS以上的实时性能,但毕竟“单一检测器(detector)”检测出来的物件是离散型的内容,例如车、人、脚踏车这些各自独立的信息。有没有什么方法能够实现“组合信息”呢?例如“黑色/大众/SUV车”!
DeepStream有一个非常强大的功能,就是多模型组合检测的功能,以一个主(Primary)推理引擎(GIE:GPU Inference Engine)去带着多个次(Secondary)推理引擎,就能实现前面所说的功能。
本实验在Jetson Nano 2GB上,执行4种模型的组合检测功能,能将检测到的车辆再往下区分颜色、厂牌、车种等三个进一步信息,在4路输入视频状态下能得到20+FPS性能,并且我们将显示的信息做中文化处理(如下图)。
在Jetson Nano 2GB上已经安装的DeepStream的范例中,已经预先准备了多个与“车”有关的检测器,可以在/opt/nvidia/deepstream/deepstream/samples/models目录下,看到以下信息:
nvidia@nano2g-jp450:/opt/nvidia/deepstream/deepstream/samples/models$ ls -l 总用量 24 drwxrwxrwx 2 root root 4096 7月 13 23:49 Primary_Detector drwxrwxrwx 2 root root 4096 7月 13 22:45 Primary_Detector_Nano drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_CarColor drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_CarMake drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_VehicleTypes drwxrwxrwx 4 root root 4096 2月 8 21:49 Segmentation |
简单说明一下每个目录所代表的的意义:
组成结构也十分简单,其中主(Primary)检测器只有一个,而且必须有一个,否则DeepStream无法进行推理识别。次(Secondary)检测器可以有好几个,这里的范例就是针对“Car”这个类别,再添加“Color”、“Maker”、“Type”这三类元素,就能获取视频图像中物件的更完整信息。
在Jetson Nano的/opt/nvidia/deepstream/deepstream/samples/config/deepstream-app下面的source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt,就已经把这个组合检测器的配置调试好,现在直接执行以下指令:
cd /opt/nvidia/deepstream/deepstream/samples/config/deepstream-app deepstream-app -c source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt |
现在看到启动四个视频窗,但是每个视窗的执行性能只有8FPS,总性能大约32FPS,并不是太理想。
接下来看看怎么优化这个配置文件,
修改主检测器[primary-gie]的模型:配置文件中预设的是“Primary_Detector”检测器,这里得修改成专为Nano所训练的版本,这里修改以下几个地方:
因为Jetson Nano(含2GB)并不支持int8计算精度,因此还需要做以下修改:
修改完后重新执行,可以看到每个窗口的检测性能提升到10~12FPS,总性能提升到40~48FPS,比原本提升12~50%,不过距离理想中的25FPS还有很大的差距。
执行过程中如果遇到“There may be a timestamping problem, or this computer is too slow.”这样的信息,就把[sink0]下面的“sync=”设定值改为“0”就可以。
现在看看是否还有什么可调整的空间?参考前一篇文章“DeepStream-04:Jetson Nano摄像头实时性能”所提到的,将[primary-gie]下面的“interval=”设定为“1”,然后再执行应用时,发现每个输入源的识别性能立即提升到20FPS左右(如下图),总性能已经能到80FPS左右,比最初的32FPS提升大约2.5倍,这已经很接近实时识别的性能。
好了,在Jetson Nano 2GB上已经能达到接近实时推理的性能,是相当好的状态。
如果对于显示输出的状态有些不满意的话,我们按照下面的步骤去执行,将“英文”类别名改成“中文”,并且将边框变粗、字体放大,就能更轻松看到推理的效果:
例如deepstream/samples/models/Secondary_CarMake的“labels.txt”内容改为“广汽;奥迪;宝马;雪佛兰;克莱斯勒;道奇;福特;通用;本田;现代;英菲尼迪;吉普;起亚;雷克萨斯;马自达;奔驰;日产;速霸路;丰田;大众”,其他的就比照办理。
注意:这个顺序不能改变!
现在重新执行这个deepstream-app的应用,就能得到本文一开始所显示的效果:
如何?这样的效果与性能就是在Jetson Nano 2GB实现的!【完】
好文章,需要你的鼓励
数字孪生技术正在改变网络安全防御模式,从被动响应转向主动预测。这种实时学习演进的虚拟副本让安全团队能够在威胁发生前预见攻击。组织可以在数字孪生环境中预演明日的攻击,将防御从事后反应转变为事前排演。通过动态更新的IT生态系统副本,团队可在真实条件下压力测试防御体系,模拟零日漏洞攻击并制定应对策略,从根本上重塑网络安全实践方式。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
Linux内核开发面临动荡时期,Rust语言引入引发摩擦,多名核心开发者相继离职。文章介绍了三个有趣的替代方案:Managarm是基于微内核的操作系统,支持运行Linux软件;Asterinas采用Rust语言开发,使用新型framekernel架构实现内核隔离;Xous同样基于Rust和微内核设计,已有实际硬件产品Precursor发布。这些项目证明了除Linux之外,还有许多令人兴奋的操作系统研发工作正在进行。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。