前面已经介绍过关于DeepStream各种输入源的使用方式,而且Jetson Nano 2GB上开启4路输入(两个摄像头+两个视频文件),都能得到25FPS以上的实时性能,但毕竟“单一检测器(detector)”检测出来的物件是离散型的内容,例如车、人、脚踏车这些各自独立的信息。有没有什么方法能够实现“组合信息”呢?例如“黑色/大众/SUV车”!
DeepStream有一个非常强大的功能,就是多模型组合检测的功能,以一个主(Primary)推理引擎(GIE:GPU Inference Engine)去带着多个次(Secondary)推理引擎,就能实现前面所说的功能。
本实验在Jetson Nano 2GB上,执行4种模型的组合检测功能,能将检测到的车辆再往下区分颜色、厂牌、车种等三个进一步信息,在4路输入视频状态下能得到20+FPS性能,并且我们将显示的信息做中文化处理(如下图)。
在Jetson Nano 2GB上已经安装的DeepStream的范例中,已经预先准备了多个与“车”有关的检测器,可以在/opt/nvidia/deepstream/deepstream/samples/models目录下,看到以下信息:
nvidia@nano2g-jp450:/opt/nvidia/deepstream/deepstream/samples/models$ ls -l 总用量 24 drwxrwxrwx 2 root root 4096 7月 13 23:49 Primary_Detector drwxrwxrwx 2 root root 4096 7月 13 22:45 Primary_Detector_Nano drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_CarColor drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_CarMake drwxrwxrwx 2 root root 4096 2月 8 21:50 Secondary_VehicleTypes drwxrwxrwx 4 root root 4096 2月 8 21:49 Segmentation |
简单说明一下每个目录所代表的的意义:
组成结构也十分简单,其中主(Primary)检测器只有一个,而且必须有一个,否则DeepStream无法进行推理识别。次(Secondary)检测器可以有好几个,这里的范例就是针对“Car”这个类别,再添加“Color”、“Maker”、“Type”这三类元素,就能获取视频图像中物件的更完整信息。
在Jetson Nano的/opt/nvidia/deepstream/deepstream/samples/config/deepstream-app下面的source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt,就已经把这个组合检测器的配置调试好,现在直接执行以下指令:
cd /opt/nvidia/deepstream/deepstream/samples/config/deepstream-app deepstream-app -c source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt |
现在看到启动四个视频窗,但是每个视窗的执行性能只有8FPS,总性能大约32FPS,并不是太理想。
接下来看看怎么优化这个配置文件,
修改主检测器[primary-gie]的模型:配置文件中预设的是“Primary_Detector”检测器,这里得修改成专为Nano所训练的版本,这里修改以下几个地方:
因为Jetson Nano(含2GB)并不支持int8计算精度,因此还需要做以下修改:
修改完后重新执行,可以看到每个窗口的检测性能提升到10~12FPS,总性能提升到40~48FPS,比原本提升12~50%,不过距离理想中的25FPS还有很大的差距。
执行过程中如果遇到“There may be a timestamping problem, or this computer is too slow.”这样的信息,就把[sink0]下面的“sync=”设定值改为“0”就可以。
现在看看是否还有什么可调整的空间?参考前一篇文章“DeepStream-04:Jetson Nano摄像头实时性能”所提到的,将[primary-gie]下面的“interval=”设定为“1”,然后再执行应用时,发现每个输入源的识别性能立即提升到20FPS左右(如下图),总性能已经能到80FPS左右,比最初的32FPS提升大约2.5倍,这已经很接近实时识别的性能。
好了,在Jetson Nano 2GB上已经能达到接近实时推理的性能,是相当好的状态。
如果对于显示输出的状态有些不满意的话,我们按照下面的步骤去执行,将“英文”类别名改成“中文”,并且将边框变粗、字体放大,就能更轻松看到推理的效果:
例如deepstream/samples/models/Secondary_CarMake的“labels.txt”内容改为“广汽;奥迪;宝马;雪佛兰;克莱斯勒;道奇;福特;通用;本田;现代;英菲尼迪;吉普;起亚;雷克萨斯;马自达;奔驰;日产;速霸路;丰田;大众”,其他的就比照办理。
注意:这个顺序不能改变!
现在重新执行这个deepstream-app的应用,就能得到本文一开始所显示的效果:
如何?这样的效果与性能就是在Jetson Nano 2GB实现的!【完】
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。