近日,在本周举行的CVPR(国际计算机视觉与模式识别会议)上,NVIDIA发布全新预训练模型并宣布迁移学习工具包(TLT)3.0全面公开可用。迁移学习工具包在NVIDIA TAO平台指导工作流程以创建AI的过程中起到核心作用。新版本包括各种高精度和高性能计算机视觉和对话式AI预训练模型,以及一套强大的生产级功能,可将AI开发能力提升10倍。

NVIDIA提供高质量的预训练模型和TLT以帮助降低大规模数据采集和标注成本,同时告别从头开始训练AI/机器学习模型的负担。初入计算机视觉和语音服务市场的企业现在也可以在不具备大规模AI开发团队的情况下部署生产级AI。
迁移学习的举一反三
随着企业积极拥抱人工智能技术,强大的AI开发工具成为企业的最大诉求。借助开发工具,企业可以可以更好地加快加快产品上市、降低开发成本以及定制化。不过,对于许多尝试使用开源AI产品创建模型进行训练的工程和研究团队来说,在生产中部署自定义、高精度、高性能AI模型的挑战非常大,从头开始创建一个模型不但耗时耗力,而且成本高昂。而迁移学习可以解决这样的问题。
迁移学习(Transfer Learning)是一种机器学习方法,是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。
NVIDIA Transfer Learning Toolkit是一个基于Python的工具包,它使开发人员能够使用NVIDIA预先训练好的模型,并让开发人员能够使用流行的网络架构适配他们自己的数据来训练、调整、修剪和导出以进行部署。它拥有简单的接口和抽象,提高了深度学习训练工作流程的效率。
利用第三方预先训练好的模型的好处是非常多的,比如不用自己构建训练数据进行模型旋律,节省IT建设投入,同时也不用团队成员学习众多的开源深度学习框架。虽然选择预先训练好的模型会带来诸多好处,但是这些模型经常存在一些问题:现成的模型在特定的应用领域中精度较低或者没有针对GPU进行优化等。
简化AI工作流程
NVIDIA TLT是一个能够消除AI/DL框架复杂性,无需编码就能更快构建生产级预训练模型的AI工具包。TLT通过NVIDIA为常见AI任务开发的多用途生产级模型或者ResNet、VGG、FasterRCNN、RetinaNet和YOLOv3/v4等100多种神经网络架构组合,使用自己的数据对特定用例的模型进行微调。所有模型均可从NVIDIA NGC获得。
预训练模型加速了开发人员的深度学习训练过程,并且减少了大规模数据收集、标记和从零开始训练模型相关的成本。开发者选择NVIDIA提供的预先训练好的模型,然后结合自己场景或者用例的数据,就可以得到输出模型。迁移学习后得到的模型可以直接进入到深度学习应用/项目的部署阶段。
TLT 3.0新版本亮点包括:
除了技术层面的更新,TLT也在生态合作方面取得了重大进展。训练可靠的AI和机器学习模型需要大量精确标记的数据,而大规模获取标记和注释的数据对一些企业来说极具挑战。
TLT 3.0现在还与AI Reverie、Appen、Hasty.ai、Labelbox、Sama和Sky Engine等数家领先合作伙伴的平台集成,这些合作伙伴提供大量多样化的高质量标签数据,使端到端AI/机器学习工作流程变得更快。
企业可以使用这些合作伙伴的服务来生成和注释数据、通过与TLT无缝集成进行模型训练和优化并使用DeepStream SDK或Jarvis部署模型以创建可靠的计算机视觉和对话式AI应用。
结语
从TLT 3.0可以看到NVIDIA在推动AI应用快速开发的赋能之举,当前AI技术已经深入各行各业,如何将AI与自身业务场景进行融合成为企业的最大诉求。TLT 3.0的推出可以借助NVIDIA预先训练好的模型,帮助企业优化AI工作流程,快速开发AI应用。
好文章,需要你的鼓励
周一AWS美东数据中心DNS故障导致数百万用户和上千家企业断网,Reddit、Snapchat、银行和游戏平台均受影响。专家认为这凸显了冗余备份的重要性,CIO需要根据业务关键性进行风险评估,优先保护核心系统。单一供应商策略仍可行,但需通过多区域部署分散风险,建立故障转移计划。金融、医疗等高风险行业需更高冗余级别。
上海AI实验室等机构联合提出FrameThinker框架,革命性地改变了AI处理长视频的方式。该系统采用"侦探式"多轮推理,先快速扫描全视频获得概览,再有针对性地深入分析关键片段。通过两阶段训练和认知一致性验证,FrameThinker在多个视频理解基准测试中准确率平均提升10.4%,计算效率提高20倍以上,为AI视频理解领域带来突破性进展。
英国政府发布新的反勒索软件指导文件,旨在解决供应链安全薄弱环节。该指南与新加坡当局联合制定,帮助组织识别供应链问题并采取实际措施检查供应商安全性。英国国家网络安全中心过去一年处理了204起"国家重大"网络安全事件。指南强调选择安全可靠的供应商、加强合同网络安全条款、进行独立审计等措施,以提升供应链韧性和防范网络攻击。
复旦大学团队创建MedQ-Bench基准,首次系统评估AI模型医学影像质量评估能力。研究覆盖五大成像模式,设计感知-推理双层评估体系,意外发现医学专用AI表现不如通用AI。结果显示最佳AI模型准确率仅68.97%,远低于人类专家82.50%,揭示了AI在医学影像质控应用中的现实挑战和改进方向。