上一篇文章为大家深入地讲解了videoSource()这个非常强大的输入源处理模块,本文的重点将聚焦在videoOutput()这个输出标的处理模块。
videoOutput()与videoSource()几乎具备一致的特性。这里直接列出了videoOutput()所支持的输出种类与媒体格式:
我们在前面已经熟悉了将结果输出到显示器上的方式,接下来就来体验其他几种输出方式,这对于将来开发边缘应用是非常有帮助的。要知道绝大部分的边缘计算场景,都是不能在设备上直接连上显示器的,那么此时如何观看该设备上所监控到的视频内容呢?通常就是将输入源所获取的数据,做完深度学习推理识别之后的结果,做以下两种处理方式:
至于使用哪种方式,必须根据实际场景而定。而本文的重点就是带着大家,对这两种用法进行试验,并借此学会这些使用方法。
我们还是用10lines.py代码为基础来进行修改,不过为了节省测试时间,这里会将深度学习推理计算的部分省略掉,只保留videoSource()与videoOutput()这两部分的代码。修改后的内容如下:
import jetson.utils input = jetson.utils.videoSource(INPUT) output = jetson.utils.videoOutput(OUTPUT)
while output.IsStreaming(): img = input.Capture() output.Render(img) |
这个6行代码,让人看起来非常轻松,却又支持了绝大部分常用的输入、输出形态与格式。
接下来的重点,就是将代码内的INPUT与OUTPUT做有效的置换,试试以下几种组合状况:
接下来就进行RTP视频流转向的示范步骤:
import jetson.utils input = jetson.utils.videoSource(“/dev/video0”) output = jetson.utils.videoOutput(“rtp://192.168.55.100:1234”)
# import jetson.inference # net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5)
while output.IsStreaming(): img = input.Capture() # detections = net.Detect(img) output.Render(img) |
1 |
|
执行过程中会出现如下截屏的摄像头信息内容:
最后停在下面截屏的地方,发送端到这边就不用再去动这个指令框了。
1 |
|
正确执行指令后,接收端设备的命令行会停留在如下图的状态:
并且还会跳出一个显示框,核对以下显示的内容与Jetson Nano上的摄像头是否一致。
发送端与接收端之间的显示,是否出现时间差?取决于网络的质量!
首先得在接收设备上安装VLC播放软件,然后用文字编辑器生成一个”.sdp”文件,例如”rdp.sdp”,里面的内容如下:
ic=IN IP4 127.0.0.1 m=video 1234 RTP/AVP 96 a=rtpmap:96 H264/90000 |
同样先在发送端执行10lines.py这个代码,然后在接收端用VLC播放器打开rdp.sdp,就可以在VLC播放器上显示了。
这样就能很轻松地将Jetson Nano 2GB上的摄像头看到的画面,直接透过RTP转到PC上去呈现。
这时候,如果你打开Jetson Nano 2GB的jetson-stats监控软件,也会看的左下角“NVDEC”处于执行的状态。
如果我们这时候将“物件检测”的推理识别功能打开的话,会出现怎样的结果呢?先将前面代码中的”#”部分取消,开启对象检测的功能,执行一次看看就知道,是否如下图一样会出现检测的结果。
好的,到这里为止,是不是已经可以更好地掌握videoOutput()的一些用法了呢?
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
IDEA研究院等机构联合开发了ToG-3智能推理系统,通过多智能体协作和双重进化机制,让AI能像人类专家团队一样动态思考和学习。该系统在复杂推理任务上表现优异,能用较小模型达到卓越性能,为AI技术的普及应用开辟了新路径,在教育、医疗、商业决策等领域具有广阔应用前景。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室提出SPARK框架,创新性地让AI模型在学习推理的同时学会自我评判,通过回收训练数据建立策略与奖励的协同进化机制。实验显示,该方法在数学推理、奖励评判和通用能力上分别提升9.7%、12.1%和1.5%,且训练成本仅为传统方法的一半,展现出强大的泛化能力和自我反思能力。