在本系列上一篇文章中,我们带领大家调节了 CSI 图像质量。在本篇文章中,我们将带领大家了解 Jetson Nano 2GB 的颜色空间动态调节技巧。
HSV 色彩空间是计算机视觉领域应用频率非常高的颜色模型,主要有 Hue(色调)、Saturation(饱和度)与 Value(值)三者组合而成,与一般比较熟悉的 RGB 或 BGR 像点值组成颜色的方式是完全不同的。
在前面做过的“追踪特定颜色物件”实验中,必须不断修改代码中的某些值,然后重复执行代码去确认这些值的正确性,这对于某个特定颜色来说还勉强可以用用,但如果需要动态地对多种颜色进行识别的话,那可就令人头痛了。
因此本文特别提供一个简单工具,结合 OpenCV 的 createTaskbar 与 getTrackbarPos 这两个功能,协助初学者掌握颜色变化时的各项参数。
创建 BGR 色彩空间调色板
首先以人类习惯的 BGR 颜色空间为例,创建一个最简单的调色板,完整代码如下:
执行的结果如下图,用鼠标滑动 B/G/R 的值,下面色块会根据上面三个值的组合进行实时调整。
这是个非常简单而且实用的工具。接下来我们将 BGR 颜色空间修改成 HSV 颜色空间,因为大部分计算机视觉的应用,是采用 HSV 颜色空间进行转换。
创建 HSV 色彩空间调色板
关于 HSV 的原理,请自行百度上参考其细节,这里只挑与代码有关的部分简单说明。
在 Hue 色调部分由于有个上下限的范围,执行结果就会出现如下图的调色板,可用鼠标调整每个数值。不过到此只是显示这个调色板,还不具备任何功能。
使用 HSV 色彩空间调色板
接下去将前面“追踪特定颜色物件”代码集成进来,最终目的是利用这个调色板对特定颜色进行过滤(追踪)的功能,主要步骤如下(代码见“粗体底线”部分):
执行后的显示结果如下,左边是原图,中间是调色板,右边是调整后筛选的颜色:
利用鼠标调节中间调色板的各项数值,然后右边的结果就会立即产生变化:
以上色彩空间调色板的制作,应该会对您有所帮助。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。