在本系列上一篇文章中,我们为大家展示了如何通过 OpenCV 调用 CSI/USB 摄像头,在本篇文章中,我们将向大家介绍如何执行常见机器视觉应用。
在上一篇文章中,已经简单说明了图像处理与计算机视觉的差异,并且在 Jetson Nano 2GB 上,结合 CSI 摄像头与 JetPack 所提供的 OpenCV 4.1.1 版本,实现了三种最基础的应用。每个 Python 代码都只需要 10+ 行就可以,让大家轻松感受到 Jetson Nano 2GB 的开发便利性。
本篇内容主要是在 Jetson Nano 2GB 上运用 OpenCV,执行三个有特色的计算机视觉应用,这部分会很频繁的运用到色彩空间(color space)转换技巧,在 OpenCV 上只需要一道“cv2.cvtColor()”指令就可以实现,非常简单。
接下来就开始本文的实验内容。
追踪特定颜色物件
本范例追踪“绿色”物体,执行步骤如下:
先找出“绿色”的 HSV 颜色范围,本处定在[50,100,100]至[70,255,255]
将读入的图像(frame)透过 cv2.cvtColor() 转成 HSV 格式,存到 hsv 变量
用 cv2.inRange() 函数找出 hsv 的掩码,存到 mask 变量
用 cv2.bitwize_and() 函数将 frame 与 mask 进行 AND 计算,过滤掉“非绿”部分,将结果存到 detect 变量
将原图(frame)、掩码(mask)与结果(detect) 显示在画面上
执行结果如下:
边缘检测(Edge Detection)
执行步骤如下:
这个计算必须将图像转成灰度图像,才能计算出每个物件的边缘线条
将读入的图像(frame)透过 cv2.cvtColor 转成 HSV 灰度图像,存到 hsv 变量
为了降低图形的噪点,因此需要将 HSV 灰度图进行高斯模糊(降噪)处理,直接调用 cv2.GaussianBlur() 函数进行转换,将图像存到 blur 变量中
最后调用 cv2.Canny() 函数为 blur 图像找出边际线条,存入 edges 变量中
为了显示过着中所有图像,因此先将每张图像都调整尺寸为(640,480),然后执行三次 np.concatenate() 函数,将四张图像集成为一张,便于显示。
执行结果如下:
人脸追踪+眼睛追踪
这个代码调用 OpenCV 自带的 HaarCascade 算法分类器,调用方式也很简单,需要指定脸部分类器(classifier)的位置,在 /usr/local/share/opencv4/haarcascades 下面,里面提供将近 20 种分类器,可以按照需求变更。
这个范例也将“眼睛”识别分类器放进去,并且嵌套在脸部识别的循环里面,因为眼睛一定在脸里面,这样可以做的更丰富些。
详细代码如下:
执行结果如下:蓝色框代表找到的“脸”,绿色框表示“眼睛”。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。