在本系列上一篇文章里,我们为大家介绍了 Jetson Nano 2GB 安装 CSI 摄像头的方法,以及最基础的启动指令。在本篇文章中,我们将向大家展示如何通过 OpenCV 调用 CSI/USB 摄像头。
本期我们会带着大家使用这个摄像头,执行一些很实用的图像处理(image processing)应用,至于计算机视觉(computer vision)的应用,将在下一期里带着大家一起操作。
什么是图像处理?什么又是计算机视觉?如果您有所混淆的话,这里先做个基本说明,二者之间的区隔还是很明显的:
图像处理:输入为图像,输出也是图像
过程中对于图形进行一些应用处理,例如颜色空间(color space)转换、图像格式转换、尺寸转换、角度转换、图像合成等操作,最基本的就是将摄像头的图像读入,显示在屏幕上,并写入磁盘,这就形成一个最简单的录像功能。
计算机视觉:输入为图像,输出为信息
在输入的图像/视频中,找到特定信息的技术,例如基于颜色的追踪、物体边缘的检测、将图像的像素转成信号直方图(histogram)等计算,甚至于车道查找(lane finding)、人脸检测(face detection)等,都属于计算机视觉的范畴,其输入为一张图像,但输出的是某类从图像中淬炼出来的信息。
在 Jetson Nano 2GB 搭建的 JetPack 4.4.1 版本里,内建 OpenCV 4.1.1 版本的开发环境,这是目前图像处理、计算机视觉领域使用率最高的开发工具,因此我们就用 OpenCV 搭配 CSI 摄像头来做图像处理项目。
这里使用 Jetson Nano 2GB 的自带的 gedit 全文编辑器来撰写代码,编程语言使用 Jetson Nano 2GB 预安装的 Python 3.6 版本,由于相关所需的开发环境都已经由 JetPack 4.4.1 完整提供,因此不需要再执行额外的安装,非常简便。
我们可以将视频数据认知为由连续的图像所组合,因此在这里全部以视频处理作为示范,比较动态。至于图像的处理方式,请自行调整代码,二者之间的差异主要在写入磁盘以及是否需要循环指令的部分,如下表:
实现摄像头录像功能
这个功能主要执行三个动作:
从摄像头读入图像
给定文件名
写入磁盘中
这些动作在 OpenCV 都有非常简单的对应指令可以操作,详细代码如下:
本代码以“ESC”键结束录像。
将读入的图像执行缩放
这个功能主要执行三个动作:
摄像头读入图像
调用 cv2.resize 函数进行图像尺寸改变,选择插值方式(cv2.INTER_NEAREST)
在屏幕上显示
完整代码如下:
本代码以“ESC”键结束录像。
将读入的图像执行旋转
这个功能主要执行 4 个动作:
从摄像头读入图像
找出图像中心点
调用 cv2.getRotationMatrix2D() 函数进行旋转
显示:本范例显示 90 度/ 180 度/ 270 度
详细代码如下:
本代码以“ESC”键结束录像。
本文介绍了 3 种在 Jetson Nano 2GB 上,结合 CSI 摄像头与 OpenCV 做的很实用的图像处理应用,应该很容易上手。后面将为您介绍几个常用的计算机视觉应用情况。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。