Tensor Core GPU在每一项MLPerf基准测试结果中均实现最佳表现;用户可通过NGC使用加速堆栈。
在最新公布的业内首套人工智能基准测试中,NVIDIA创下6项人工智能性能记录。
在谷歌、英特尔、百度、NVIDIA及其他数十家科技行业领军企业的支持下,新型基准测试套件MLPerf可测定一系列深度学习工作负载。该套件涵盖了计算机视觉、语言翻译、个性化推荐以及强化学习任务等领域,旨在成为业内首个客观的人工智能基准测试套件。
NVIDIA在其提交的6个MLPerf基准测试结果中均取得了最佳表现。这些测试涵盖了多种工作负载和基础架构规模 – 从单节点上的16颗GPU到跨80节点上的多达640颗GPU。
这些测试分为6大类别,分别为图像分类、对象实例分割、目标检测、临时翻译、复发性翻译与推荐系统。NVIDIA并未提交第7类别,即强化学习的基准测试,原因是该类别尚未充分利用到GPU加速。
NVIDIA在语言翻译这一关键基准测试类别中表现尤为出色,仅需6.2分钟即完成了Transformer神经网络的训练。
NVIDIA工程师利用NVIDIA DGX系统实现了这些测试结果。该系统包括全球最强大的人工智能系统NVIDIA DGX-2,搭载了16颗完全连接的V100 Tensor Core GPU。
NVIDIA是唯一一家参与多达6项基准测试的科技公司,充分展现出V100 Tensor Core GPU在部署人工智能工作负载方面的通用性。
NVIDIA副总裁兼加速计算总经理Ian Buck表示:“全新基准MLPerf展示了NVIDIA Tensor Core GPU非凡的性能与通用性。我们的Tensor Core GPU拥有高性价比,且可通过各地的云服务提供商及电脑制造商实现供货,进而帮助世界各地的开发人员在开发过程中的每一个阶段推进人工智能的应用。”
要想在复杂多样的计算工作负载中实现优异性能,不仅仅需要出色的芯片。加速计算也不单单与加速器有关,还需要实现全堆栈创新。
NVIDIA堆栈包括NVIDIA Tensor Cores、NVLink、NVSwitch、DGX系统、CUDA、cuDNN、NCCL、经过优化的深度学习框架容器以及NVIDIA软件开发套件。
NVIDIA的人工智能平台是最便捷且高性价比的选择。Tensor Core GPU可通过各地的云服务提供商及电脑制造商实现供货。
借助售价仅为2500美元的超强桌面级GPU——NVIDIA TITAN RTX,用户在桌面上也可实现相同的Tensor Core GPU强大功能。如果按照3年使用期来计算,该GPU每小时的费用仅相当于几美分。
通过NVIDIA GPU Cloud(NGC)云容器注册,用户可持续更新这些软件的加速堆栈。
用于实现NVIDIA业界领先的MLPerf性能的软件创新与优化,现可通过我们最新的NGC深度学习容器免费获取。
此容器包含经过NVIDIA优化的完整软件堆栈及顶级人工智能框架。18.11版本NGC深度学习容器包含了用于实现我们MLPerf基准测试结果的详细软件。
开发人员可将这些软件用于任意地点以及各大开发阶段:
如果您计划开展自己的人工智能项目,或者参与MLPerf基准测试,请通过NGC容器注册下载容器。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。