Nvidia与NetApp合作打造深度学习GPU服务器芯片

作者:The Register   来源:至顶网服务器频道    2018-06-07 07:35:52

关键字: GPU NetApp NVIDIA

NetApp和Nvidia已经推出了一个组合式的AI参考架构系统,与Pure Storage和Nvidia 合作的AIRI系统相竞争。

NetApp和Nvidia已经推出了一个组合式的AI参考架构系统,与Pure Storage和Nvidia 合作的AIRI系统相竞争。

这款系统主要针对深度学习,与FlexPod(思科和NetApp合作的融合基础设施)不同,这款系统没有品牌名称。而且与AIRI不同的是,它也没有自己的机箱封装。

NetApp和Nvidia技术白皮书《针对实际深度学习用例的可扩展AI基础设施设计》定义了一个针对NetApp A800全闪存存储阵列和Nvidia DGX-1 GPU服务器系统的参考架构(RA)。此外还有一个速度慢一些的,成本更低的、基于A700阵列的参考架构。

高配的参考架构支持单个A800阵列(高可用性配对配置),5个DGX-1 GPU服务器,连接2个思科Nexus 100GbitE交换机。速度较慢的A700全闪存阵列参考架构支持4个DGX-1和40GbitE。

A800系统通过100GbitE链路连接到DGX-1,支持RDMA作为集群互连。A800可横向扩展为24节点集群和74.8PB容量。

据说A800系统可实现25GB /秒的读取带宽和低于500微秒的延迟。

Nvidia与NetApp合作打造深度学习GPU服务器芯片

NetApp Nvidia DL参考架构配置图

Pure Storage和Nvidia的AIRI有一个FlashBlade阵列,支持4个DGX-1。FlashBlade阵列提供17GB /秒的速度,低于3毫秒的延迟。这与NetApp和Nvidia合作的参考架构系统相比似乎较慢,但A800是NetApp最快的全闪存阵列,而Pure的FlashBlade则更多地是一款容量优化型闪存阵列。

和Pure AIRI Mini一样,NetApp Nvidia DL RA可以从1个DGX-1起步,扩展到5个。 A800的原始容量通常为364.8TB,Pure的AIRI原始闪存容量为533TB。

AIRI RA配置图如下所示:

Nvidia与NetApp合作打造深度学习GPU服务器芯片

Pure Nvidia AIRI配置图

NetApp和Pure都对他们的这两个系统进行了基准测试,并且都包含Res-152和ResNet-50运行使用合成数据、NFS和64批量大小。

NetApp提供了图表和数据,而Pure只提供图表,所以对比起来有点困难。不过,我们可以通过将这些图表放在一起做个粗略的估计。

合成的总图表并不漂亮,不过确实提供了一些对比:

Nvidia与NetApp合作打造深度学习GPU服务器芯片

NetApp和Pure Resnet性能对比

至少从这些图表可以看出,NetApp Nvidia RA的性能优于AIRI,但让我们吃惊的是,由于NetApp/Nvidia DL系统与Pure AIRI系统相比具有更高的带宽和更低的延迟,分别是25GB/s的读取带宽和低于500微秒以下,后者分别17GB/s和低于3毫秒。

价格对比很好,但没有人透露给我们这方面的数据。我们猜测Nvidia可能会宣布更多深度学习方面的合作伙伴关系,就像NetApp和Pure这样的。HPE和IBM都是很明显的候选对象,还有像Apeiron、E8和Excelero等NVMe-oF这样的新兴阵列初创公司。

  

    扫一扫

    分享文章到微信


    北京第二十六维信息技术有限公司(至顶网)版权所有. 京ICP备15039648号-7 京ICP证161336号京公网安备 11010802021500号
    举报电话:010-62641205-5060 涉未成年人举报专线:010-62641208 举报邮箱:jubao@zhiding.cn 网上有害信息举报专区:https://www.12377.cn 安全联盟认证