英伟达公司CEO黄仁勋终于说出了人们憋在心中许久的结论——摩尔定律已死,而这一论断亦使其成为首位作此评价的主流半导体厂商掌门人。
摩尔定律得名自英特尔公司创始人Gordon Moore(戈登-摩尔)。根据他在1965年对于技术发展的观察,晶体管体积正不断缩小,因此每年芯片制造商都能够在同等芯片面积之内容纳两倍于上一年的晶体管数量。而到1975年,这一速度下降为每两年实现一次倍增。
黄仁勋本届于台北举办的Computex大会上告诉我们,目前每一代芯片制造技术的主要推动力已经集中于大规模架构调整以及增加通道传输能力,但这些方案目前并无法继续保持每年50%的晶体管密度提升要求。顺带一提,作为年度盛会,Computex大会每年都吸引到大批记者与分析师前往现场。
黄仁勋解释称,“微处理器已经不再像以往那样立足性能水平进行扩展——这意味着摩尔定律已经宣告终结。半导体的物理学性质阻碍着我们进一步采取等比例缩放定律实现性能提升。”
英伟达公司CEO黄仁勋在本届台北Computex大会上指出,半导体技术与微处理器性能之间开始出现差距。
登纳德缩放,亦被称为等比例缩放定律(简称MOSFET),源自罗伯特-登纳德(Robert H. Dennard)于1974年发表之论文。从基本概念上,这一定律是指随着晶体管功的体积逐步降低,其功率密度则保持不变,意味着功率水平与芯片面积成正比。
摩尔定律与登纳德定律回报率降低使得半导体行业进入发展中的成熟阶段,目前只有少数芯片制造商能够承受推动制程技术升级所需要的数十亿美元投资。到当下为止,只有少数芯片设计人员能够立足16纳米与14纳米制造具有实用性价值的芯片产品。这意味着两大定律作为设计规则的作用越来越模糊。
技术发展的停滞也使得芯片行业近年来出现大规模合并风潮,相关兼并与收购活动投入达数十亿美元。
英伟达公司CEO黄仁勋预测,GPU计算将取得进一步发展。
尽管如此,但黄仁勋提出了半导体行业的另一种发展方向,即图形处理器。英伟达公司预计其产品将在未来几年内持续发展。黄仁勋解释称,深度学习方案将利用英伟达旗下全新架构GPU的处理能力作为主要依托,而这亦将使得该公司在人工智能、电脑游戏业务等领域继续占据主导地位。
目前,半导体行业正在积极探索摩尔定律之外的一些潜在发展途径。部分新兴中国芯片制造商正在全面推动硅绝缘体FD-SOI技术的发展。另一些厂商则摆脱平面设计的束缚,考虑将三维芯片作为实现性能提升的可行方式。
瑞信信贷公司分析师Randy Abrams在本届台北Computex大会上表示,英伟达公司全力投身人工智能领域以促进芯片行业发展的作法确实值得肯定。
英伟达公司强调称,其Volta GPU采用12纳米制程以打造出一款815毫米芯片,其面积达成iPhone处理器的7倍。另外,此款芯片亦使用台积电公司的硅插入器技术以实现16 GB高传输带宽内存。英伟达公司打造的8芯片配置DGX-1方案专门针对深度学习/主性能计算需求,售价为14万9千美元。
英伟达公司的数据中心业务较上年同期增长186%,根据本季度推算全年营收可达17亿美元。而对于台积电公司而言,这部分业务能够带来5亿美元营收,相当于其整体营收的1.5%。Abrams同时指出,AI还需要一段时间才能抵消手机作为主要营收动力的市场需求下滑问题。
好文章,需要你的鼓励
大多数用户只使用计算机预装的操作系统直到报废,很少尝试更换系统。即使使用较老版本的Windows或macOS,用户仍可通过开源软件获益。本文建议通过重新安装系统来提升性能,Mac用户可从苹果官方下载各版本系统安装包,PC用户则建议使用纯净版Windows 10 LTSC以获得更长支持周期。文章强调备份数据的重要性,并推荐升级内存和固态硬盘。对于老旧系统,应替换需要联网的内置应用以降低安全风险,定期进行系统维护清理。
新加坡南洋理工大学研究团队提出"棱镜假设",认为图像可像光谱一样分解为不同频率成分,低频承载语义信息,高频包含视觉细节。基于此开发的统一自编码系统UAE,通过频率域分解成功统一了图像理解和生成能力,在多项基准测试中超越现有方法,为构建真正统一的视觉AI系统提供了新思路,有望推动计算机视觉技术向更智能统一的方向发展。
微软杰出工程师Galen Hunt在LinkedIn上宣布,目标是到2030年消除微软所有C和C++代码。公司正结合AI和算法重写最大的代码库,目标是"1名工程师、1个月、100万行代码"。微软已构建强大的代码处理基础设施,利用AI代理和算法指导进行大规模代码修改。该项目旨在将微软最大的C和C++系统翻译为内存安全的Rust语言,以提高软件安全性并消除技术债务。
芝加哥伊利诺伊大学团队提出QuCo-RAG技术,通过检查AI训练数据统计信息而非内部信号来检测AI回答可靠性。该方法采用两阶段验证:预检查问题实体频率,运行时验证事实关联。实验显示准确率提升5-14个百分点,在多个模型上表现稳定,为AI可靠性检测提供了客观可验证的新方案。