边缘计算——在更靠近终端用户而非集中式数据中心的地方进行运算的实践——多年来一直是IT领域的热门话题。由于边缘架构能够降低延迟并提升性能,企业已经广泛采用这种架构来解决速度、安全性和效率方面的挑战。
虽然这些优势长期以来都很重要,但在实时数据分析和人工智能时代,边缘计算变得更加关键。这些工作负载需要近乎瞬时的处理能力,使得传统网络架构变得不太可行。
但是,关于边缘计算的讨论有多少只是纸上谈兵,又有多少反映了真实的应用情况?企业在多大程度上积极部署边缘工作负载?他们面临哪些挑战,又看到了哪些好处?
为了回答这些问题,ITPro Today对IT专业人士进行了调研,了解他们所在组织的边缘计算策略和投资情况。本报告详细介绍的调研结果,为边缘计算的现状以及企业在网络边缘的下一步投资计划提供了宝贵见解。
主要调研发现包括:
o IT专业人士对边缘计算的认知仍然有限,55%的受访者表示他们对这一概念只是"有一定了解"。
o 边缘计算投资差异很大:21%的企业在IT预算中分配不到5%,而33%的企业至少将10%的预算投入到边缘相关项目中。
o 性能改善和安全性是采用IT边缘计算的主要驱动因素。
o 分析和数据缓存是主要用例,而更先进的应用——如AI/ML推理和智慧城市基础设施——仍然不够普及。
o Microsoft Azure IoT Edge是使用最广泛的边缘平台,尽管组织采用的解决方案各不相同。
o 混合云-边缘模型是主流架构,36%的组织都在实施这种架构。
o 成本是边缘计算采用的最大障碍。
o 企业正在部署各种策略和解决方案来降低边缘数据安全风险。
如需深入了解调研数据及其对现代IT策略的影响,请立即下载我们的《2025年边缘计算趋势报告》免费副本!
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。