独家报道:AMD Instinct GPU即将获得Voltron Data加速SQL引擎Theseus的支持,这是英伟达CUDA护城河正在变浅的最新迹象。
Theseus于2023年底推出,以忒修斯之船命名,因为它在不断地拆解和重建。该引擎使用GPU来加速SQL查询,能够高速处理大量数据。
去年早些时候,Voltron展示了其Theseus平台,在不到一小时的时间内,完成了直接从存储中提取的未排序Parquet文件上的完整TPC-H 100TB规模基准测试。
随着企业寻求利用人工智能获益,快速处理大量数据的能力变得越来越重要。这是因为数据通常需要预处理,然后才能用于微调或集成到检索增强生成(RAG)管道等应用中。在后者的情况下,查询处理速度可能产生重大影响。如果AI基础设施因等待数据库查询完成而停滞,那么其处理令牌的速度再快也没有意义。
迄今为止,这种GPU加速数据处理主要在英伟达加速器上运行。例如,Voltron的TPC-H基准测试使用了约6TB的英伟达加速器。但现在该公司正寻求将这一功能扩展到AMD的Instinct系列芯片。
Voltron Data联合创始人兼现场首席技术官Rodrigo Aramburu表示:"我们的目标是让客户能够选择在英伟达或AMD架构上运行其SQL查询引擎。"
自MI300X首次亮相以来的一年半时间里,AMD的Instinct加速器在超大规模企业和云服务提供商(如Meta、甲骨文和微软)中,作为英伟达GPU的替代方案越来越受欢迎。这是因为在Instinct上运行AI推理工作负载相对比同等的英伟达芯片更便宜。甲骨文上周宣布计划部署131,072个AMD最新一代MI355X加速器。
虽然让大型语言模型在任一供应商的GPU上运行相对简单,但AI只是用户可能想要加速的众多工作负载之一。
不幸的是,在英伟达硬件上运行这些工作负载所需的CUDA软件库,并不总是有AMD的等效版本。
提醒一下,CUDA这个术语经常被用来描述英伟达的低级GPU编程语言,但它实际上是一个优化用于加速各种工作负载的库和框架集合。这加深了所谓CUDA护城河的认知。
AMD已投入大量资源构建其开源软件栈来缩小这一差距。事实上,Aramburu指出,仅在过去几个月中,让SQL数据库在AMD的CDNA架构上运行所需的库才出现在GitHub上。
特别是,Voltron Theseus SQL引擎的最新版本基于hipDF构建,这是AMD对支撑英伟达数据科学平台RAPIDS的libcuDF库的等效版本。
与cuDF类似,hipDF是一个GPU加速的DataFrame库,用于加载、连接、聚合、过滤和其他数据操作,基于Apache Arrow。hipDF是AMD上个月推出的ROCm数据科学库的一部分。
但是,仅仅因为库存在并不意味着将它们集成到现有平台中会很容易或高效。好消息是,Aramburu告诉我们,这个过程比工程团队担心的要轻松得多。
"我们对一切运行状况印象深刻,"他说。
对于Voltron的客户来说,所有这些都是抽象的。无论使用谁的GPU,SQL数据库都可以被加速。
实际实施仍处于早期阶段,Theseus对Instinct加速器的支持仍在预览中。不过,Aramburu表示,即使在这个早期阶段,AMD平台的性能表现也很好。
Aramburu说:"早期基准测试显示出强劲的性能和可扩展性,验证了我们在不同硅片上的加速器原生分析栈。"
Voltron已经在计划在AMD MI300上进行另一次TPC-H测试。尽管这可能会在今年晚些时候更接近正式发布时进行。
对加速器的生产支持预计将在今年晚些时候推出。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。