Meta 表示,通过使用基于开源 eBPF 项目的 Strobelight 性能分析编排套件,成功将其核心服务的 CPU 使用周期减少了 20%。
对于这家以规模化用户变现为主营业务的公司来说,这一优化意味着运营 Facebook、Instagram、WhatsApp 以及元宇宙相关业务所需的服务器数量减少了 10% 到 20%。
eBPF 目前已不再是某个缩写的代称。虽然它最初代表"扩展伯克利数据包过滤器" (extended Berkeley Packet Filter),但随着其功能范围的不断扩展,这个缩写已经超越了其最初的含义。
这个拥有独立基金会的开源软件,为 Linux (以及正在开发中的 Windows 版本) 提供了一种在操作系统内核中运行沙盒程序的方法。这使得软件能够在特权内核环境中相对安全地运行,而无需构建和插入内核模块、将软件打包为驱动程序,或重新编译内核来添加所需功能。
在内核中运行对于服务优化特别有用,尤其是在大规模系统中,微小的性能瓶颈和低效问题都可能被放大,造成重大影响。在不影响性能的前提下,跨多个系统收集数据,并确保数据在不同内核版本间保持一致性和可解释性,这绝非易事。
Meta 开发的开源工具 Strobelight 可以协调各种使用 eBPF 的性能分析应用,用于收集可观测性数据——包括系统事件日志、性能度量指标和网络连接追踪等。其目标是提高基础设施效率,从而降低成本并获得运营优势。
Meta 软件工程师 Jordan Rome 在今年一月表示:"eBPF 允许安全地将自定义代码注入内核,这使得以极低开销收集各类数据成为可能,为可观测性领域带来了无限可能,很难想象没有它 Strobelight 要如何运作。"
Strobelight 目前包含 42 个不同的性能分析应用,这个数字颇具意义。这些分析工具可以测量内存使用、函数调用次数、各种编程语言中的事件、AI GPU 使用情况、服务请求延迟等指标。
正如 eBPF 基金会最近发布的 Meta 服务器节省案例研究中所述,仅通过一个字符的代码修改,就实现了相当于每年 15,000 台服务器容量的节省。
这个字符是一个 & 符号,但对 Meta 的财务人员来说,它的价值堪比美元符号。
根据 Rome 的说法:"一位经验丰富的性能工程师在查看 Strobelight 数据时发现,通过筛选特定的 std::vector 函数调用 (使用符号化的文件和行号),他可以识别出 C++ 中使用 'auto' 关键字时无意中产生的计算成本高昂的数组复制操作。"
在发现这个代价高昂的数组复制出现在 Meta 某个主要广告服务的路径中后,这位工程师确定这个向量复制并非有意为之。于是他在 auto 关键字后添加了一个 "&",将复制操作转换为引用,通过指向数据而不是复制数据来避免不必要的数据重复。
Rome 说:"这是一个单字符的提交,部署到生产环境后,估计每年可节省相当于 15,000 台服务器的容量。"
人们不禁会想,如果使用删除字符会带来多大的节省。
好文章,需要你的鼓励
这项研究提出了R1-Searcher++框架,通过两阶段训练策略使大语言模型能像人类一样灵活利用内部知识和外部信息。该方法创新性地采用强化学习激励模型优先使用内部知识,并引入记忆机制将检索到的信息转化为内部知识,实现动态知识获取。实验表明,R1-Searcher++不仅在多步问答任务上表现优异,还大幅减少了检索次数,显著提高了推理效率。
这项研究提出了AutoRefine,一种革新性的强化学习框架,为大语言模型引入了"边思考边搜索和完善"的全新范式。与传统方法不同,AutoRefine在连续搜索调用之间添加知识完善步骤,让模型能够有效过滤和组织信息。通过结合答案正确性和检索质量双重奖励,该方法在七项问答基准测试中平均提升6.9%的准确率,特别在复杂多跳推理场景中表现突出,解决了现有检索增强推理的核心局限性。
这项研究揭示了一种新型网络安全威胁:利用普通网络广告攻击AI网页代理。中科院研究团队开发的AdInject攻击无需特殊权限,仅通过精心设计的广告内容就能误导AI代理点击恶意链接,成功率高达90%以上。研究使用严格的黑盒模型,更符合现实场景,暴露了当前AI代理面临的实际安全漏洞。实验还表明,即使添加专门的防御提示,这类攻击仍能成功率超过50%,凸显了设计更强大防御机制的紧迫性。
东北大学与快手科技联合研发的UNITE系统为多模态信息检索带来突破性进展。这项发表于2025年5月的研究首次系统分析了模态特定数据如何影响检索性能,并提出创新的模态感知掩码对比学习技术,有效解决不同模态间的竞争关系。UNITE能同时处理文本、图像、视频及其组合,在40多项测试中超越现有方法,即使与参数规模更大的模型相比也表现出色。研究发现视频-文本对在通用检索中表现优异,而文本-文本和文本-图像对对指令遵循任务至关重要,为未来多模态系统研究提供了宝贵指南。