很少有企业在 IT 发展初期就建立一个成熟的数据中心。更常见的路径是先建立服务器机房,随着 IT 需求的扩展再逐步升级到数据中心。
这就引发了一个问题:企业何时应该用数据中心替换服务器机房?在做出转换决定时,企业应该权衡哪些性能、安全性、成本等因素?
以下是针对可能已经超出服务器机房容量的企业的建议。
服务器机房与数据中心:有何区别?
虽然服务器机房和数据中心都为部署 IT 设备提供专用空间,但它们在本质上是不同类型的设施。主要区别包括:
规模:数据中心通常可容纳数千台服务器,而服务器机房可能只能容纳几十台。
专用系统:数据中心拥有专用的电力、暖通空调、安保等系统,可靠性更高。服务器机房通常与大楼共享这些系统,而大楼的主要用途往往是提供办公空间。
位置:服务器机房通常位于企业已有的、主要用于其他用途的设施内。相比之下,数据中心可以建在任何地方,这对于想要将 IT 资产与其他业务分开的公司来说是一个优势。
可访问性:由于数据中心是独立设施,可能远离组织的其他场所,所以通常比服务器机房更难访问。后者通常建在 IT 办公室附近,便于人员访问内部服务器,而数据中心可能只有少数技术人员在现场工作。
总的来说,数据中心更先进,更适合支持大规模、复杂的 IT 需求。
如何判断你的服务器机房已不够用
对某些公司来说,在服务器机房和数据中心之间的选择很明确。服务器机房最适合没有大规模 IT 需求的小型企业,而大型企业通常需要一个"真正的"数据中心。
对于中型企业,这个选择往往不那么明确。如果一个企业多年来一直在使用服务器机房,通常没有单一的明显迹象表明是时候升级到数据中心了。而且这样做可能会花费大量资金却不一定必要。
那么,如何判断你的服务器机房已经不够用,需要升级到数据中心呢?在大多数情况下,这个决定取决于以下因素:
1. 新服务器空间不足
迁移出服务器机房最常见的原因是空间不足。如果你已经没有足够的物理空间来部署新的机架和服务器,这清楚地表明数据中心更适合你的需求。
2. 高端服务器投资
服务器越贵,将它们放在数据中心而不是服务器机房就越有意义。如果你部署的是便宜的"商用"服务器,即使发生水管泄漏或故障电气元件导致的过电流等问题造成一些损坏,损失也较小。
但如果你投资的是配备昂贵 AI 芯片的服务器,你可能也应该投资建设专用数据中心,为你的投资提供更强大的保护。
3. 频繁的 IT 中断
频繁的服务器宕机或停机是考虑迁移到数据中心的另一个充分理由。特别是当这些中断源于服务器机房本身的固有问题时(如整栋建筑的供电系统故障),而在拥有独立电源的数据中心里,这种风险会小得多。
4. 网络性能挑战
网络性能不足是考虑使用专用数据中心的另一个原因。这基于两个原因:首先,数据中心通常提供比服务器机房更大的带宽,而服务器机房的网络容量受限于所在建筑的网络基础设施。
其次,数据中心让你在部署服务器时有更大的灵活性。这使得在地理位置上更接近最终用户的地方运营服务器变得更容易,缩短了数据包传输时间。
服务器机房和数据中心之外的选择
当你的服务器机房不敷使用时,升级到全面的数据中心并非唯一选择。其他路径包括:
租用托管设施的空间,而不是建设自己的数据中心。
将工作负载迁移到公有云,完全消除对私有基础设施的需求。
投资微型或便携式数据中心,这种小规模设施比传统数据中心成本低得多,但与服务器机房不同,它提供更先进的电力、暖通空调和安保系统。
结论:当你的服务器机房不再满足需求时,你有很多选择。最大的挑战是决定何时利用这些选择,超越传统的服务器机房。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。