2023年11月24日,中国——专为多云环境提供先进数据存储技术及服务的全球 IT 先锋Pure Storage® (NYSE: PSTG) 近日与Wakefield Research联袂发布了最新调查报告,报告指出各行业企业在部署人工智能时所面临的阻碍,揭示了人工智能这项先进技术背后常被忽视的能源需求。
《变革驱动力:直面人工智能部署所致的能源和数据挑战》调查报告新鲜出炉,揭示了重新评估数据基础设施的重要性,以便企业真正从人工智能中获益,控制能源成本,实现企业的环保目标。
报告亮点:
来自美国和欧洲500+员工规模企业的500名IT买家为本次调查对象,经调查发现:
行业意义:
各行各业都在加快应用人工智能,但大多数企业缺乏必要的基础设施来满足高性能数据需求和能源需求,难以充分发挥人工智能的优势。这一局限性阻碍了人工智能的成功实施,无法有效支持企业的关键举措,包括旨在实现环保目标的举措。几乎所有的IT买家都认为要想减少碳足迹,需要克服重重压力。事实上,大多数企业都认为,如果不妥善构建IT基础设施,支持应用人工智能,就不可能实现IT目标。
企业对更智能基础设施的需求从未像现在这样迫切。旧系统通常无法支持大量人工智能数据工作流,充分释放机器学习的潜力也就无从谈起。随着人工智能以越来越快的步伐入驻企业,IT团队需要高效、可靠和高性能的基础设施确保有效部署。
高管洞察:
Pure Storage首席技术官Rob Lee 表示:“引导人工智能落到实处的关键在于为变化作规划,确保灵活性。人工智能时代对能源和数据的需求呈指数级增长,投资合适的人工智能就绪型数据基础设施不仅可以确保有效部署和提高能效,还能够显著推动人工智能项目实现最大价值。这份新鲜出炉的报告见解独到,既指出了不进行规划的后果,也指出了有备而来的企业在人工智能的影响波及基础设施时能获得怎样的益处。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。