当你的数据中心不再适合你的需求时,你该怎么办?
最明显的答案是用替换成新的数据中心。但这可能不是最具成本效益的方法,也肯定不是最可持续的方法。
在某些情况下,更好的解决方案是改造你的数据中心。通过改造,你可以对现有数据中心进行改进,使其更适合你的需求,而无需花费费用和时间来构建替代的数据中心。
什么是数据中心改造?
数据中心改造是对现有数据中心进行重大更改以提高其可用性的过程。
改造可能需要更换主要系统,例如HVAC和电力基础设施,让你的数据中心运行更可靠且更具成本效益。此外,改造还可能涉及重新设计数据中心的布局,以改善气流或在设施中安装更多服务器机架。
从本质上讲,你为了使现有数据中心更有效而进行的任何重大改善都是改造。
改造现有数据中心的优点和缺点
与用新数据中心替换旧数据中心相比,改造的主要优点是改造让你可以继续使用现有的设施,而不必购买新的房产并建造新的数据中心,后者可能要花费数百万美金和数月时间。
从可持续发展的角度来看,数据中心改造也是有益的,因为这么做可以让你延长现有设施的使用寿命,而不是对其进行处置并消耗大量能源去建造新的数据中心。
另一方面,改造也带来了一些重大挑战:
改造适合你吗?
由于存在这些挑战,改造并不总是让数据中心满足新需求的最佳方法,如果你想对数据中心进行非常重大的改造,那么迁移到新设施可能会更好。
但如果你打算改造的规模较小或者仅影响某些系统的话,改造可能是你最好的选择。如果管理得当,改造往往比完全更换数据中心更便宜、更快。
如何改造数据中心?
改造数据中心的过程将根据你要实施哪些变动而有所不同。但总的来说,改造过程是这样的:
当你通过分步计划进行数据中心改造的时候,就可以在这个复杂且耗时的过程中最大限度地降低风险。
结论
在决定你的数据中心需要更换之前,请考虑进行改造。改造并不总是提高数据中心成本效益或满足新要求的最佳解决方案,但如果你想要进行的更改规模有限,那么改造可能是让你的数据中心加快速度的一种更快、更实惠且更可持续的方式。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了CURE框架,通过强化学习让大语言模型同时学习编写代码和生成单元测试两种能力,无需使用标准代码作为监督。团队开发的ReasonFlux-Coder模型在仅用4.5K编程问题训练后,便在多个基准测试中超越了同类模型,代码生成准确率提高5.3%,最佳N选1准确率提高9.0%。该方法不仅提升了模型性能,还提高了推理效率,同时为降低API调用成本和无标签强化学习提供了新思路。
南京大学与字节跳动联合团队开发的MotionSight系统,为多模态大语言模型提供了"动态视觉增强"能力,解决了现有AI系统在理解视频细粒度动作方面的困难。这一零样本方法通过对象中心的视觉聚光灯和动态模糊技术,显著提升了模型对物体动作和摄像机动作的感知能力,在不需要额外训练的情况下实现了业界领先性能。研究团队同时构建了MotionVid-QA数据集,这是首个专注于细粒度视频动作理解的大规模开源数据集,包含4万多个视频片段和近9万个问答对,为未来研究提供了宝贵资源。