近日,为了更好地满足客户在AI业务场景下的需要,UCloud优刻得镜像市场上线支持了Milvus向量数据库镜像。
随着时代发展,文档资料、图片、语音、视频影像等非结构化数据开始海量涌现。为了能够更好地使用这些数据,可以使用embedding将它们转换为向量,并将这些向量存储到向量数据库中,建立索引方便检索。检索时通过计算两个向量的相似度来分析它们之间的相关性。如果两个向量非常相似,则表示原始数据源也非常相似,从而找到目标数据。
利用这样的存储和检索的能力,在大语言模型(LLM)的技术架构中,向量数据库可以作为一个持久性的记忆体,满足对私有知识库文档和数据的存储管理、保存大模型的处理结果、保存AI智能体产生的新知识和交互上下文等需求,并在模型需要时随时快速调用,提高模型结果输出的准确性和效率。
此次UCloud镜像市场新增支持的Milvus,正是一款在Github上拥有两万多星的开源向量数据库,专门为向量的快速查询检索而设计,能够对万亿规模的向量数据创建索引。Milvus具备高性能、高可扩展性等特点,数据可持久化存储在本地或者支持s3协议的对象存储,且支持数据分区;除了向量,Milvus还支持布尔值、整数、浮点数等数据类型,可以更好地存储表达业务数据的特性;Milvus还将标量过滤和向量相似度搜索相结合,支持混合查询的能力;同时,Milvus还支持多种开发语言SDK,有丰富的周边配套工具。
目前UCloud镜像市场提供的Milvus向量数据库是Standalone版本,只需4个步骤,即可通过云主机镜像快速获得向量数据库能力。
1、登录UCloud控制台
(https://console.ucloud.cn/uhost/uhost/create)
2、选择快杰O型云主机,推荐配置8核CPU、16G内存、系统盘不低于100G
3、在镜像市场选择“向量数据库Milvus”镜像
4、立即创建,开机后系统将自动启动Milvus向量数据库。同时,云主机内还预装了milvus_cli客户端工具,可以直接访问

连接访问Milvus以及数据操作的更多使用细节可参考官方文档:
https://milvus.io/docs/manage_connection.md

如若向量数据库所需要的CPU/内存/硬盘需要扩展,可以通过云主机的改配功能,数秒内即可完成升级。
UCloud优刻得在云主机镜像市场中发布的向量数据库镜像,旨在为AI业务场景的客户提供技术架构中所需要的一个重要拼图,尤其是在图片/语音/视频检索、文本检索、NLP语言问答等业务场景中,向量数据库可以很好的应用。同时,该向量数据库还可以与不久前镜像市场发布的大模型镜像相结合,形成更完整的解决方案,满足业务技术架构需要。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。