近日,为了更好地满足客户在AI业务场景下的需要,UCloud优刻得镜像市场上线支持了Milvus向量数据库镜像。
随着时代发展,文档资料、图片、语音、视频影像等非结构化数据开始海量涌现。为了能够更好地使用这些数据,可以使用embedding将它们转换为向量,并将这些向量存储到向量数据库中,建立索引方便检索。检索时通过计算两个向量的相似度来分析它们之间的相关性。如果两个向量非常相似,则表示原始数据源也非常相似,从而找到目标数据。
利用这样的存储和检索的能力,在大语言模型(LLM)的技术架构中,向量数据库可以作为一个持久性的记忆体,满足对私有知识库文档和数据的存储管理、保存大模型的处理结果、保存AI智能体产生的新知识和交互上下文等需求,并在模型需要时随时快速调用,提高模型结果输出的准确性和效率。
此次UCloud镜像市场新增支持的Milvus,正是一款在Github上拥有两万多星的开源向量数据库,专门为向量的快速查询检索而设计,能够对万亿规模的向量数据创建索引。Milvus具备高性能、高可扩展性等特点,数据可持久化存储在本地或者支持s3协议的对象存储,且支持数据分区;除了向量,Milvus还支持布尔值、整数、浮点数等数据类型,可以更好地存储表达业务数据的特性;Milvus还将标量过滤和向量相似度搜索相结合,支持混合查询的能力;同时,Milvus还支持多种开发语言SDK,有丰富的周边配套工具。
目前UCloud镜像市场提供的Milvus向量数据库是Standalone版本,只需4个步骤,即可通过云主机镜像快速获得向量数据库能力。
1、登录UCloud控制台
(https://console.ucloud.cn/uhost/uhost/create)
2、选择快杰O型云主机,推荐配置8核CPU、16G内存、系统盘不低于100G
3、在镜像市场选择“向量数据库Milvus”镜像
4、立即创建,开机后系统将自动启动Milvus向量数据库。同时,云主机内还预装了milvus_cli客户端工具,可以直接访问

连接访问Milvus以及数据操作的更多使用细节可参考官方文档:
https://milvus.io/docs/manage_connection.md

如若向量数据库所需要的CPU/内存/硬盘需要扩展,可以通过云主机的改配功能,数秒内即可完成升级。
UCloud优刻得在云主机镜像市场中发布的向量数据库镜像,旨在为AI业务场景的客户提供技术架构中所需要的一个重要拼图,尤其是在图片/语音/视频检索、文本检索、NLP语言问答等业务场景中,向量数据库可以很好的应用。同时,该向量数据库还可以与不久前镜像市场发布的大模型镜像相结合,形成更完整的解决方案,满足业务技术架构需要。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。