任何生活在现代数字经济中的人一整天都会依赖于数据中心。然而,很少有人完全了解数据中心的工作原理,即使是经验丰富的IT专业人士也不总是能够很好地了解数据中心发生的事情、数据中心与更广泛的IT行业之间的关系,甚至是数据中心所处的位置。
为了证明这一点,让我们看看关于数据中心的五个常见误解,并解释一下为什么是错误的。
误区一:只有大型科技公司才有数据中心
大多数主流媒体对数据中心的报道,都集中在超大型科技公司拥有的设施上。例如,非专业人士可能知道TikTok位于挪威的数据中心正在耗尽该地区的能源,以及有关Facebook和Apple数据中心如何给当地社区带来的影响。
基于这样的报道,可以很容易地假设认为,只有大型科技企业才运营数据中心。
但这是一个神话。实际上,几乎所有运营可扩展数字基础设施的企业——也就是说,几乎所有当今现有的大中型企业——都依赖于某种数据中心设施。银行、保险公司和许多其他不符合科技公司特征的企业,都拥有数据中心。
误区二:数据中心正在被云取代
即使在科技行业,随着越来越多的工作负载转移到公有云平台,很容易相信私有数据中心正在消失。在94%的企业都使用云的时代,还有人依赖数据中心吗?
答案是肯定的。撇开公有云本身就依赖于数据中心这一事实不说,整个数据中心行业仍在以稳定的速度增长着。公有云让数据中心变得越来越无关紧要的神话,是完全错误的。
误区三:数据中心位于偏远的地区
让普通市民描述数据中心,他们很可能会说数据中心是一种在沙漠中部或其他人烟稀少地区的建筑物。我们倾向于认为数据中心离大多数人很远。
的确,数据中心——尤其是大型数据中心——通常建在偏远地区。但人口稠密的地区也是数据中心的所在地。例如,纽约有数十个数据中心设施,但在这些数据中心附近生活和工作的人可能都还不知道。
误区四:数据中心正在破坏环境
人们越来越多地意识到,数据中心会消耗大量的电力。例如,越来越多的媒体文章强调来自数据中心的流媒体视频带来的碳影响。这种报道可能会让一些人认为,数据中心正在毁灭地球,因为数据中心消耗了大量的能源。
现实要复杂得多。诚然,数据中心需要大量的电力,但并非所有电力都是“脏”的,加在一起,数据中心仅占总能源使用量的1%左右。 相比之下,运输业约占世界能源消耗的28%。
还有一种观点认为,数据中心比托管数字基础设施等其他方法更为环保,因为数据中心运行效率更高。一般来说,一个旨在优化能源使用的数据中心内运行10000台服务器,可能会比运行分散在数百个本地服务器机房中的10000台服务器所产生的碳排放更少,后者更难以优化可持续性,并且能源消耗方面也无法从规模经济中获益。
误区五:数据中心对环境有益
另一方面,高估数据中心的可持续性也是一个谬论。
即使在数据中心所有者越来越渴望获得可再生能源的时代,大多数数据中心所依赖的大部分电力都是来自化石燃料。
此外,即使是广泛依赖清洁能源的数据中心,也可能只能断断续续地这样做,因为太阳能和风能产生的电量在一天不同时段或者一年不同季节是有很大差异的。因此,即使是“绿色”数据中心也不总是绿色的。
结论
从运营数据中心的公司类型,到数据中心所在的位置,再到数据中心行业的可持续性,及其他方面,数据中心神话比比皆是。所幸的是,只要你跳出这些笼统,思考现代数据中心的细节和细微差别,就很容易消除这些神话了。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
MWS AI联合ITMO大学提出CoSpaDi技术,通过稀疏字典学习实现大型语言模型高效压缩。该方法突破传统低秩分解限制,为不同知识类型提供定制化存储方案,在20%-50%压缩比例下显著优于现有方法。支持跨层字典共享和数据感知优化,兼容量化技术,为移动设备和边缘计算部署大模型提供实用解决方案。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
莫斯科大学团队开发的TUN3D系统实现了重大技术突破,首次让普通相机拍摄的照片就能准确识别房间结构和物体位置。该系统无需专业3D扫描设备或精确位置信息,仅用手机拍摄的多角度照片即可重建完整3D场景模型。在多个标准数据集测试中均达到最佳性能,为房地产、室内设计、电商等领域带来革命性应用前景。