英特尔研究院推出了Kapoho Point开发板,更新了Lava框架,并公布了新增的英特尔神经拟态研究社区支持项目。
通过去年发布的Loihi 2第二代研究芯片和开源Lava软件框架,英特尔研究院正在引领神经拟态计算的发展。作为英特尔神经拟态技术商业化目标的一部分,英特尔研究院正在向开发者提供新工具,以便将开发过程推进到下一阶段。例如,8芯片Loihi 2开发板Kapoho Point,就可以通过堆叠满足大规模工作负载的需求,并可实现与低延迟事件相机(event-based vision sensors)的直接互连。
Loihi 2是英特尔的第二代神经拟态研究芯片。它支持新型类脑算法和应用程序,提供更快的处理速度与更高的资源密度,同时提高能效。(图片来源:英特尔公司)
此外,英特尔研究院还更新了开源Lava框架,以支持可编程神经元、整型脉冲神经元、卷积网络和持续学习。从最新版Lava(v0.5)开始,与Loihi 1系统上的相同工作负载相比,这些新功能使Kapoho Point运行深度学习应用的速度提高了12 倍,能耗也降低了15倍1。 此外,英特尔还通过英特尔神经拟态研究社区(INRC)启动了八个由英特尔赞助的大学项目。
向社区成员交付下一代神经拟态系统
基于Loihi 2的开发板Kapoho Point是一个紧凑系统(compact system),非常适合从无人机到卫星和智能汽车的各种小尺寸设备和应用。Kapoho Point可以运行包含多达10亿个参数的AI模型,也能解决涵盖多达800万个变量的优化问题。与在CPU上运行的先进求解器相比,它把速度提高了10倍以上,能耗降低了1000倍。此外,还能通过堆叠多个开发板实现Kapoho Point的扩展,以解决更大规模的问题。
基于Loihi 2的开发板Kapoho Point是一个紧凑系统,非常适合从无人机到卫星和智能汽车的各种小尺寸设备和应用。(图片来源:英特尔公司)
美国空军研究实验室(AFRL)是研究社区中第一个启用Kapoho Point的成员,正在把它用于内部研究,涉及基于脉冲神经网络的学习以及需要实时优化的问题。数据处理与开发高级科学家Qing Wu博士表示:“由于美国空军研究实验室的任务是在空中和太空中进行的,这使得移动平台的空间、重量和功率预算(power budget)非常有限。对在这种环境中运行AI算法的需求而言,神经拟态计算技术提供了非常出色的计算解决方案。”
通过Lava软件框架,降低神经拟态开发的门槛
对开源、模块化且可扩展的Lava软件框架的更新包括面向Loihi 2功能集的一系列改进,例如可编程神经元、分级事件和持续学习。
英特尔研究院更新了开源Lava框架,以支持可编程神经元、整型脉冲神经元、卷积网络和持续学习。(图片来源:英特尔公司)
Lava软件框架可以在GitHub上免费下载。
神经拟态生态系统项目
英特尔神经拟态研究社区(INRC)已经启动了八个由英特尔支持的大学项目,包括乔治梅森大学、昆士兰科技大学、格拉茨技术大学、苏黎世大学 、布朗大学、宾夕法尼亚州立大学、滑铁卢大学和哥廷根大学。
研究项目包括自适应机器人定位、可用于脑机接口的无线仿生传感脉冲解码、神经拟态贝叶斯优化、听觉特征检测以及新型类脑架构和算法。
自2018年成立以来,英特尔神经拟态研究社区的成员数已增加到180多个,包括大学实验室、政府机构以及埃森哲、联想、罗技和梅赛德斯-奔驰等全球领先企业。
接下来,英特尔研究院将为开发人员不断提供新工具,让他们能更轻松地开发解决现实问题的应用,并继续支持社区研究。
了解更多信息,请访问:intel.com/neuromorphic。
好文章,需要你的鼓励
文章探讨了CIO在2025年应该重点投资的五个AI领域:可信工作流的代理AI、智能文档管理、营销客户数据需求、从数据驱动转向AI驱动、重新审视IT架构以支持AI目标。这些投资可以在短期内带来效益,同时成为长期财务回报的倍增器。CIO需要在这些领域制定务实的AI应用策略,简化平台,加强风险管理,以应对未来的挑战和机遇。
Instabase 公司完成 1 亿美元 D 轮融资,估值 12.4 亿美元。该公司提供非结构化数据处理平台,可从多种文件中提取信息并标准化。新资金将用于增强数据提取、分析和搜索功能,以满足企业 AI 需求。
人工智能在建筑设计领域正展现出惊人潜力。从生成令人赏心悦目的建筑效果图,到创造无限游戏世界,AI 正逐步改变设计流程。尽管人类仍是核心创作者,但 AI 辅助工具正迅速普及,未来可能会大幅提升设计效率和质量。这一趋势引发了对 AI 取代人类建筑师的担忧,也带来了硬件革命和地缘政治影响。
研究显示,高收入公司的CEO正将人工智能置于业务战略的核心地位。欧美企业声称已具备AI项目的基础条件。专家建议避免过度乐观,关注投资回报,构建稳健的数据基础,并优先考虑循序渐进的推广策略。研究还发现,最成功的公司往往是那些高层领导有意识地不直接参与AI战略制定的公司。