前面教大家使用DeepStream的Docker镜像去创建自己的Python工作环境,其好处是即使Jetson设备需要使用JetPack重新安装系统,我们只要重新启动这个Docker容器就可以,无需重复环境配置的工作。
输入源在视频分析中是至关重要的部分,先前的视频文件只是单纯的测试目的,真正实用的部分还是需要接上摄像头或网络的视频流,这样才能应用到实际的工作场景。本文的内容就是带领读者将摄像头与RTSP流接入容器内使用,搭建具有实用价值的容器。
第一件任务就是要判断摄像头的种类与数量,用最简单的“ls /dev/video*”指令并不能分辨其种类,因此最好的方法还是使用v4l2工具。请先执行以下指令安装这个工具:
$ |
sudo apt install -y v4l-utils |
安装好之后,请执行以下指令:
$ |
v4l2-ctl --list-devices |
如果检测到以下“imx219”之类的信息,表示这个摄像头为CSI类型:
如果检测到以下“USB Camera”信息的,就表示为USB摄像头:
在Jetson Orin开发套件的USB摄像头都会占用2个video口,例如上图中的一台USB摄像头占用video0与video1两个端口,但实际能调用作为输入功能的是第一个video0的编号,如果设备上有多个摄像头的时候,就需要特别注意这些细节。
由于CSI摄像头与USB摄像头的调用方式不同,因此在创建Docker容器时,需要使用以下两种不同的映射方式将设备指到容器内使用:
这些摄像头加到容器之后,会发现容器内的编号与容器外是对应的,例如原本video0与video2两个USB摄像头,进到容器之后同样为video0与video2的编号。
由于Jetson Orin开发套件的CSI摄像头比较特殊,因此这里使用两个USB摄像头来做演示,并以nvcr.io/nvidia/deepstream-l4t:6.1-samples镜像来创建执行容器,如果您按照前面文章将samples内容复制到容器外的话,请执行以下指令:
$ $ |
sudo xhost +si:localuser:root docker run -it --net=host --runtime=nvidia -e DISPLAY=$DISPLAY \ -w /opt/nvidia/deepstream/deepstream -v /tmp/.X11-unix/:/tmp/.X11-unix \ -v ~/deepstream/samples:/opt/nvidia/deepstream/deepstream/samples \ --device /dev/video0 --device /dev/video2 nvcr.io/nvidia/deepstream-l4t:6.1-samples |
现在进入容器后先检查摄像头数量,请执行以下指令:
$ $ |
apt install -y v4l-utils v4l2-ctl --list-devices |
会看到如下的信息,表示有两个USB摄像头:
这样就能在容器内调用摄像头来进行工作。
在容器内用deepstream-app进行演示,使用samples/config/deepstream-app下的source1_usb_dec_infer_resnet_int8.txt配置文件,不过需要对配置文件进行以下的修改:
主要修改部分如下:
[tiled-display] ... columns=2 ... [source0] ... camera-v4l2-dev-node=0 # 将[source0]内容复制一份成下面的[source1],并修改节点编号 [source1] ... camera-v4l2-dev-node=2 ... [sink0] ... type=2 |
修改完后,就在容器内执行以下指令:
$ $ |
cd samples/config/deepstream-app deepstream-app -c source1_usb_dec_infer_resnet_int8.txt |
就应该能看到显示两个摄像头的画面。
如果您已经按照前面文章创建支持Python开发环境的DeepStream容器,现在就可以用前面存好的deepstream-l4t:6.1-python镜像创建ds_python容器,如果还没有创建好的话,请参考前一篇文章中去调试Python执行环境。
现在执行以下指令,使用deepstream-l4t:6.1-python镜像创建可执行Python范例的容器:
$ $
$ |
sudo xhost +si:localuser:root docker run -id --net=host --name=ds_python --runtime=nvidia -e DISPLAY=$DISPLAY \ -w /opt/nvidia/deepstream/deepstream -v /tmp/.X11-unix/:/tmp/.X11-unix \ -v ~/deepstream/deepstream/sources:/opt/nvidia/deepstream/deepstream/sources \ -v ~/deepstream/deepstream/samples:/opt/nvidia/deepstream/deepstream/samples \ --device /dev/video0 --device /dev/video2 deepstream-l4t:6.1-python docker exec -it ds_python bash |
进入容器后,先使用以下指令检查摄像头是否完成连接:
$ $ |
apt install -y v4l-utils v4l2-ctl --list-devices |
如果看到如下的信息,表示有两个USB摄像头:
现在使用Python范例的deepstream-test1-usbcam项目来执行USB摄像头的测试,请执行以下指令:
$ $ |
cd sources/deepstream_python_apps/apps/deepstream-test1-usbcam/ ./deepstream_test_1_usb.py /dev/video0 |
这样就能在容器内调用USB摄像头。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。