联邦机器学习又名联邦学习,联合学习,联盟学习。联邦机器学习是一个机器学习框架,能有效帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下,进行数据使用和机器学习建模。
中国上海 – 2022年8月1日
全球领先的边缘计算解决方案提供商—凌华科技与致星科技(简称“星云Clustar”)达成合作,携手打造边缘联邦学习的一体机,颠覆传统的集中式机器学习训练。此平台采用凌华科技的MECS-7211作为边缘计算服务器,与星云CLustar的FPGA隐私计算加速卡,为个资隐私解套,应用于密集型计算的加速场景,如隐私计算、机器学习、基因测序、金融业务、医疗、视频处理、网络安全等。
随着物联网的快速发展以及5G网络普及化,大量终端设备接入网络中产生海量数据,传统的数据计算分析基于云计算进行,随着数据的急剧增加,由应用终端传送至云计算过程中,会造成延时和数据泄露,及时并有效地处理数据成为云计算中心的一大挑战,边缘计算(Edge Computing)因应而生。
在靠近人、物或数据源的网络边缘侧,就近提供边缘智能服务,更有效率的网络服务响应,大大提升物联网、车联网、工业控制、智能制造、大视频等众多业务需求。边缘计算技术的引入,减轻了云中心的网络负担, 但同时也引起了安全性问题,而数据的本地化,容易阻碍数据间的交互,加之近年数据安全、应用规范不断收紧,如 GDPR 数据隐私以及数据保护的议题被高度重视。传统机器学习算法采用的数据集中化计算,无法应对数据规范要求,限制人工智能的发展。
在此背景下,联邦学习(Federated machine learning/Federated Learning)应时而生,为边缘计算的安全问题提供了解决方案。
联邦学习是一个机器学习框架,在参与方使用加密后的私有数据进行运算,仅交换加密状态后的模型参数、权重及梯度等特征,无需将原始数据移出本地,也无需将加密后的原始数据移动集中,即能帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下,进行数据使用和机器学习建模。
联邦学习作为分布式的机器学习范式,保障数据不泄露并让企业用更多的数据训练模型、联合建模,实现AI协作,从技术上打破数据孤岛,为隐私保护计算解决方案的落地提供了有力支撑。
凌华科技和星云Clustar联合推出边缘联邦学习的一体机。该系统采用凌华科技的MECS-7211作为边缘计算服务器,和星云Clustar的FPGA异构加速卡,对联邦学习中常用复杂算子进行定性分析和硬件优化,便于用户实现分布式密态机器学习任务的加速。高效的存储、计算、数据传输系统,对异构系统的高效运转起到了协同优化的作用,对比传统的CPU架构,性能提升7倍,CPU+GPU方案,提升2倍,功耗降低40%。
此边缘联邦学习一体机,应用领域广泛,适用需要大量数据分析并注重隐私的金融、医疗、数据中心等领域,并已完成多处实例布署。
星云Clustar高级副总裁尚勇表示:“作为一家以算力为核心的隐私计算基础设施提供商,星云Clustar秉承算力+赋能数据要素高效流通应用的理念,为数据密集型计算场景提供高安全、高可用综合基础设施。与凌华科技携手打造边缘联邦学习一体机,是星云Clustar扩展隐私计算算力基础设施应用生态的重要一环,双方将充分进行优势互补,不断扩展边缘计算应用场景,携手打造高安全、高性能、低时延的综合计算平台。”
凌华科技网络通讯暨公共建设事业处总监叶建良表示:“凌华科技MECS系列产品,定位于5G,边缘计算平台。作为OTII规范的发起者之一,MECS系列产品符合OTII(Open Telecom IT Infrastructure)的行业规范,采用异构架构,灵活支持FPGA、GPU、5G加速等扩展卡。紧凑尺寸设计加上支持宽温运行环境,适合分布式架构应用场景,部署于网络的边缘和应用侧。凌华科技和星云Clustar联合推出边缘联邦学习的一体机,协同优化运算系统,拓展了MECS系列产品的应用,未来也将持续与星云Clustar在AI 领域合作,丰富边缘计算的应用场景。”
凌华科技致力于边缘计算和AI行业,超过二十年在电信网通运算领域的研发投入经验,专注于网络安全、5G,边缘计算,物联网等基础设施的产品和服务,提供领先、加固和可靠的硬件和软件解决方案,成为人工智能改变世界的推手。
深圳致星科技是一家以算力为核心的隐私计算基础设施提供商,专注于高性能隐私计算算力解决方案研发与技术创新,公司产品包括隐私计算平台,软硬一体机、算力加速卡等,致力于以“算力+”为隐私计算应用规模化落地打造算力“基建”,赋能数据要素有序共享与综合应用。
好文章,需要你的鼓励
香港中文大学与华为诺亚方舟实验室合作开发了PreMoe框架,解决了大型混合专家模型(MoE)在内存受限设备上的部署难题。研究团队发现MoE模型中的专家表现出明显的任务专业化特征,据此提出了概率专家精简(PEP)和任务自适应专家检索(TAER)两大核心技术。实验证明,DeepSeek-R1 671B模型在精简50%专家后仍保持97.2%的MATH500准确率,内存需求降至688GB;而更激进的精简方案(减少87.5%专家)也能保持72.0%的准确率。该方法适用于多种MoE架构,为强大AI系统的广泛部署铺平了道路。
SCIENCEBOARD是一项开创性研究,旨在评估多模态自主智能体在真实科学工作流中的表现。研究团队构建了一个包含169个高质量任务的基准测试,涵盖生物化学、天文学等六个科学领域,并开发了一个真实环境让智能体通过CLI或GUI接口与科学软件交互。实验评估表明,即使是最先进的模型在这些复杂科学任务上的成功率也仅为15%,远低于人类表现,揭示了当前技术的局限性并为未来科学智能体的发展提供了宝贵见解。
帝国理工学院的研究团队开发了AlphaMed,这是首个仅通过极简规则强化学习就能培养医疗推理能力的AI模型,无需依赖传统的思维链示范数据。通过分析数据信息丰富度和难度分布的影响,研究发现高信息量的医疗问答数据是推理能力的关键驱动因素。AlphaMed在六个医疗问答基准上取得了领先成绩,甚至超越了更大的封闭源模型,同时展现出自发的步骤推理能力,为医疗AI发展提供了更加开放、高效的新路径。
Alita是一种新型通用AI代理系统,采用极简设计理念,以"最小预定义,最大自我进化"为原则构建。由普林斯顿大学等多家机构研究团队开发的Alita,只配备一个核心能力和少量通用模块,能自主创建所需工具并重用为模型上下文协议(MCPs)。实验显示,Alita在GAIA基准测试上达到87.27%的通过率,超越包括OpenAI Deep Research在内的复杂系统,证明简约设计可带来卓越性能。